
Experience Report: Model-based Test Automation of a
Concurrent Flight Software Bus

Dharmalingam Ganesan*, Mikael Lindvall*, Stefan Hafsteinsson*, Rance Cleaveland^, Susanne L. Strege+,
Walter Moleski+

*Fraunhofer Center for Experimental Software Engineering, Maryland, USA, ^University of Maryland, USA,
 +NASA Goddard Space Flight Center, Maryland, USA

 {dganesan, mlindvall, shafsteinsson}@fc-md.umd.edu, rcleaveland@umd.edu,
{susanne.l.strege, walter.f.moleski}@nasa.gov

ABSTRACT
Many systems make use of concurrent tasks, however it is
often difficult to test concurrent design. Therefore, many test
cases are simplified and do not fully test all concurrency
aspects of the system. We encountered this problem when
analyzing test cases for concurrent flight software at NASA.
To address this problem, we developed and evaluated a
model based testing (MBT) technique for testing of
concurrent systems. Using MBT, the tester creates a model,
which is based on the requirements of the system under test
(SUT), and lets the computer generate innumerable test
cases automatically from the model. We evaluate the
effectiveness of the technique using Microsoft‘s Spec
Explorer MBT tool. We apply the technique on NASA‘s
Core Flight Software (cFS) software bus module API, which
is based on a concurrent publisher-subscriber architecture
style and is a safety-critical system. We describe how we
created a test automation architecture for testing concurrent
inter-task communication as carried out by the software bus.
We also investigate the type of issues the technique for
testing of concurrent systems can find as well as what degree
of code coverage it can achieve.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]

General Terms
Testing, Safety, Quality, Test Automation.

Keywords Model Based Testing, Concurrency,
Publish-Subscribe, Flight Software.

1 INTRODUCTION
Many systems make use of concurrent tasks, however it is
often difficult to test such systems due to interleaving of
execution of tasks. Therefore many test cases are simplified
and do not fully test all concurrency aspects of the system.
We encountered this problem when analyzing test cases for
concurrent flight software at NASA. For example, NASA‘s
Core Flight Software [3] (cFS) software bus (SB) module
API is based on a concurrent publisher-subscriber
architecture style [10]. In this flexible style, communication
between modules is indirect, using the SB as the message

broker. Modules concurrently use the SB to publish a
message which will be delivered to all subscribers of the
message. CFS is a safety-critical system. One problem is that
safety-critical systems are expected to behave reliably also
for off-nominal scenarios and thus significant testing is
required in order to gain confidence in the system.

However, as mentioned above, fully testing cFS is non-
trivial due to concurrency that cFS’ software bus is based on.
A SB is inherently difficult to test because publishers and
subscribers may run on one or more tasks concurrently. To
properly test a SB, the order in which publishers and
subscribers interact with the bus needs to be controlled and
coordinated, otherwise deciding the correctness of the bus is
impossible. For example, if a publish event precedes all
matching subscribe events, then the message shall be
dropped and the subscribers shall not receive the message,
which is a requirement in the cFS. On the other hand, if a
subscribe event precedes the matching publish event, the
message shall be delivered. Thus, the order of events is very
important, and it is not enough to randomly generate publish
and subscribe events using MBT to test the functional
correctness of the bus without keeping detailed track of the
state of the system at all times.

We addressed this problem by developing and evaluating a
testing technique for testing of concurrent systems. The
technique is based on Model Based Testing (MBT). The
reasons for using MBT as the basis are grounded in the fact
that systematic software test automation is necessary to
avoid common testing problems. Software test automation is
becoming increasingly popular with the introduction of
emerging processes and tools, such as nightly builds,
continuous integration, test-driven development, and test
automation frameworks. Even though these approaches
enable a high-level of automation through automatic
execution of test cases and save cost as well as time, the very
process of constructing the test cases is often manual.
Manually written test cases are often “uneven,” meaning that
the test cases cover common usage scenarios but do not
trigger so-called off-nominal or corner-case scenarios,
which the tester has not thought of [1][2]. This limitation of
manually written test cases is a significant problem for safety
or mission critical systems, such as the NASA’s reusable
core flight software (cFS) [3] studied in this paper.

2016 IEEE 27th International Symposium on Software Reliability Engineering

2332-6549/16 $31.00 © 2016 IEEE

DOI 10.1109/ISSRE.2016.47

445

Another problem is that manually written test cases tend to
have weak traceability to the requirements of the system
under test (SUT) making such traceability links difficult to
maintain during software evolution. In addition, test cases
(i.e. test programs or scripts) are highly technical with the
effect that the testing goal tends to disappear due to the large
amounts of code fragments and programming constructs
necessary to carry out the test. Altogether, this make test
cases difficult for non-technical stakeholders to understand
and it impedes determining whether or not all requirements
are being tested. This is a problem especially for API-level
testing (i.e. testing through the application program
interface), because APIs are inherently technical, as
discussed in this paper. In recent decades, MBT, a black-box
testing technique, has gained great momentum [9] [11] [15].
In MBT, the tester creates a model based on the requirements
of the SUT. The tester generates innumerable test cases
automatically from the model. The generated test cases are
executed against the SUT and the actual/observed behavior
is automatically compared to the expected behavior encoded
in the model, which in our work is created using Microsoft‘s
Spec Explorer tool [14] [12].

We evaluate the effectiveness of our approach for testing of
concurrent systems by applying it on NASA‘s cFS software
bus (SB) module. The contributions of this paper is twofold.
Our first contribution is that we create a test automation
architecture for testing the inter-task communication as
carried out by the SB. Our test architecture is inspired by a
parent-child metaphor in which parents send commands to
their children who perform the commands and send the
result back to their parents to decide the overall correctness.
We use our technique to generate different types of parents.
Equivalently, each parent is a test case in that it sends a
sequence of commands to its children, who are instantiated
at runtime from a framework we developed. Our second
contribution is an evaluation of the effectiveness of our
MBT-based technique by addressing the following set of
questions:

1. Is the technique, which is based on MBT, applicable
to testing a concurrent publisher-subscriber system?

2. What type of requirement issues and functional errors
can such a technique find?

3. What is the code coverage of such a technique?

The rest of the paper is structured as follows: In Section 2,
the context of our work is presented. In Section 3, the test
architecture and strategies are presented. In Section 4,
modeling and test generation are presented. In Section 5, the
strengths and weaknesses of MBT are discussed. In Section
6, related work is discussed.

2 CONTEXT
2.1 Missions using cFS
The interest in the cFS has been spreading fast within the
aerospace community [3]. For example, the Lunar
Reconnaissance Orbiter (LRO), the Global Precipitation

Measurement (GPM), the Magnetospheric Multi-Scale
(MMS) at NASA GFSC, the Radiation Belt Storm Probes
(RBSP) at Johns Hopkins University/Applied Physics
Laboratory (JHU/APL), and the Lunar Atmosphere and Dust
Environment Explorer (LADEE) at NASA AMES use cFS,
and many more missions are expected to use the cFS in the
future. At the time of writing this paper, the cFS is being
rated for manned missions. Thus, systematic and rigorous
testing is crucial to uncover hidden bugs for human safety.

2.2 Architecture of the cFS
The cFS has a layered modular structure and is implemented
in C [4] [3]. The top layer consists of mission independent
modules called applications, which can be used in one or
more missions. The second layer is the Core Flight
Executive (cFE). The cFE is the core of the cFS and must be
used in all missions. The third layer consist of the OS
abstraction layer (OSAL), which offers a common API for
all operating systems supported by the cFS (e.g. VxWorks,
RTEMS and UNIX) [6].

2.3 Architecture of the Software Bus
The SB is the part of the cFS that is being tested. The
applications are not allowed to communicate with each other
directly via API calls. Communication between applications
is instead conducted by passing messages through the SB,
which is located in the cFS layer. That is, the applications
communicate through message pipes by subscribing to and
publishing messages from the SB. Figure 1 shows the
context diagram of the SB in the cFS. Each application runs
as a separate task, and communicates with other applications
through the SB API. Each mission has three types of
applications: 1) cFE core applications, which are required in
each mission (the SB API is one of those applications); 2)
optional cFS applications that missions can choose from; 3)
mission specific applications.

Figure 1: The context diagram of the software bus.

2.4 Testing Problem
The NASA team has already done a great job of developing
a test suite of manual unit tests, reaching almost 100% line
coverage [5]. However, the unit test suite does not take
concurrency into account because it assumes that there is
only one task. For example, the existing unit test cases
assume that the publishers and subscribers are running on the

446

same task, not testing the concurrent pub-sub features across
task boundaries. To complement the existing test cases, we
use MBT and generate test cases to test the SB where the
publishers and subscribers can run on different tasks.

2.5 Collaboration Process
The NASA team develops the cFS software and does regular
testing. The Fraunhofer team is an independent testing group
that does testing after the NASA team has tested the system.
The Fraunhofer team develops testing infrastructures,
creates models for testing, generates test cases, runs test
cases on UNIX, detects defects, reports defects to NASA,
and delivers test cases for the NASA team to run in their lab.
The Fraunhofer team visits the cFS lab to run the generated
test cases of the SB on the flight software hardware and
operating systems such as VxWorks and RTEMS.

3 THE TEST ARCHITECTURE
Since the CFS architecture dynamically loads tasks, the
proposed testing architecture was deemed to be the best one
for fully automatic testing. We chose the master slave
metaphor since each app has no information about other
apps’ and therefore cannot determine whether a certain test
case passed. Instead the master asks each slave to carry out
commands before collecting results. This architecture tests
concurrently running tasks in a controlled fashion and allows
generating different types of masters that test different
combinations of command sequences. In order to take
concurrency into account when testing the MB, our testing
is based on two complementary strategies.
Strategy 1: One parent app, multiple child tasks:
The objective of the first (basic) testing strategy is to test
whether or not the SB properly routes the published
messages across task boundaries but with a limited influence
of concurrency. This is achieved by testing the SB API with
only one parent app, which is generated using MBT. This
parent app will create one or more child tasks. The child
tasks will wait for commands from the parent app by pending
on their command pipes, as shown in Figure 2. For example,
if the parent asks child 1 to perform a subscribe command,
then child 1 will call the subscribe function of the API and
send the resulting return code to the parent. The parent will
read the result from the result pipe (see Figure 2) and assert
whether the return code matches the expected one as per the
model. The result of the assertion is then logged in a log file
for the tester to review. In this strategy, the parent will wait
for the result from the child before sending a new command
to other children. Thus, the parent coordinates the testing
effort with its children. Even though the children are not
concurrently running, this testing strategy is useful to test
whether or not the SB properly routes the published
messages across task boundaries, which is a missing feature
of the existing unit test cases of the cFS. We leveraged the
SB infrastructure for sending test commands from the parent
to its children as well as for receiving results. It is a low risk
to use the code of the SUT as part of the test infrastructure
because we have embedded necessary assert statements in

the source code of the child tasks that check that the behavior
is correct. For example, if a child task creates a pipe to
receive commands from its parent, the child will call the
SUT’s create pipe function with the valid arguments such as
pipe name and depth. We assert that this should succeed
because any valid task should be able to create a pipe.
Therefore, there is no risk in using the SUT’s functionality
as part of the test infrastructure. All child tasks share the
same code base, which are instantiated at runtime. Each
child task subscribes to all of the SB API commands. The
parent task sends out a sequence of commands based on the
model of the SB. The SB broadcasts the commands. The
child task with appropriate task id processes the incoming
testing command and publishes the return code to the parent,
again using the SB. If we get 50 test cases from our model,
we view them as 50 parents, but we only run one parent at a
time, otherwise we cannot reliably assert the actual output
due to ordering of events.

Figure 2: Architecture of strategy 1.

Strategy 2: Multiple parent apps, multiple child tasks: This
testing strategy generalizes Strategy 1 by having multiple
parent apps and thus a more complex and realistic
concurrency situation is tested. Strategy 2 is more complex
to set up, which is the reason we always start with strategy
1. All parent apps run concurrently, targeting concurrency
related issues. Figure 3 illustrates the strategy. It shows, for
example, 3 parent apps and each can spawn multiple child
tasks. What these child tasks do is determined by its parent,
which is based on the model. Since the tasks run
concurrently, we had to make sure that the data parameters
of each test case would not interfere with one another,
otherwise our test cases will have a wrong test oracle, which
is a fundamental problem in a publish-subscribe architecture.

Figure 3: Architecture of strategy 2.

In our approach, we used the same model and ran the
generated test cases using the above two different test
strategies. This was done by automatically adjusting the data
parameters (e.g. pipe ids, message ids) in the generated test
cases using a template, discussed in Section 4.4. This
adjustment ensures that each family of tasks will have their

447

own set of message ids for subscribe, unsubscribe, or publish
commands. If we have 50 generated test cases, we run only
five test cases at a time, because it is difficult to reason about
test assertion failures if there are too many concurrent tasks,
although in production more than two dozen apps are
plugged-into the bus.

4 Modeling and Testing of the Bus
In this section we give an overview of our testing
environment and the workflow of how we used MBT on the
SUT, the NASA’s flight SB. It is worth to recall that we are
viewing the SUT as a black-box, and that we are testing it
through its API only. Figure 4 shows the architecture of the
testing environment and the workflow. We used the Spec
Explorer tool to develop model programs, which use a C#
like language, and we use the tool to first automatically
generate finite state machine models (FSMs) and then
automatically generate test cases by traversing the states and
transitions of the generated FSMs. We developed an adapter
that converted the generated test cases into the SUT’s native
language, which is C. After running the test cases the tester
examined the log to check the failed asserts.

Figure 4: Architecture of the MBT infrastructure.

4.1 Model Creation
A model is typically created from a certain perspective of the
SUT for a particular testing objective. Our objective is to test
publish and subscribe features of the SUT, in the presence of
multiple tasks, including off-nominal scenarios such as
repeatedly subscribing and unsubscribing to a message. The
model is a simplified, abstract representation of the SUT,
because not all features of the SUT are modeled. It is an
abstract representation because we reason about the SUT
from a conceptual perspective, without dealing with the
implementation details. It should be noted, however, that

generated test cases are concrete and are executed against the
full implementation of the SUT.

In Spec Explorer, MBT is performed by first developing a
model program, based on the requirements of the SUT.
Figure 5 shows the basic structure of a sample model
program, which we will describe in more detail.

���������	

���
�������	���
�����������������	
����
�
������ �����������
�
������������	�
�
�������������
������	���	
���	���������	�����	
�
�������������
��	��
�����	�����	
�
����������������
���	
�
���������� ���
�������������
�
���
�����������������!�	
���
�
}

Figure 5: Structure of a sample model program.

4.1.1 State variables
The state variables are data structures that keep track of
which state the system is in, from the model’s perspective.
In our case, we need to keep track of the set of pipes that are
created by each task, the set of messages each task
subscribes to on a particular pipe, and the ordered list of
messages received on each pipe. Figure 6 shows these state
variables encapsulated in the �	
��	�	 structure. Since the
goal is to test the SB in the presence of multiple tasks we
have to track the �	
��	�	 of each task. ���������

tracks the maximum depth of each pipe, subscriptions tracks
all the subscriptions on a pipe, and �
�����
 tracks a list
of message id’s in a pipe that were received from other tasks.
�	
��	�	�	� contains the data for each task.

�������	
��	�	��
����������
�����������	�����	�����
����������
�����
��������	���	����� ����!����������
��
�
���"������
�����������	�����	�����
�������
���#��
��
��
��������
�$��
���#��
�%�
&�"��
����������	���	����� �'������!!�
��
��������
��
�
���"������
�����������	�����	�����
�������

	���������
����$��
���#��
�%

������������&�"��
����������	���	����� �'�(���������!!��
�����
��
�
����������	��)����	����

�
��

	��
��
*�
�
��������
������	
���	���	�
�+	�����
������	
��
	�	�

�	�����	����� ��	
��	�	!��	
��	�	�	��,���-��
�	����� ��	
��	�	!$&��

Figure 6: State variables of the sample model program.

4.1.2 Rules and Guards
A rule is a method that updates some state variables. For
every function to test, we have a rule method. Spec Explorer
will automatically call the rule methods. Figure 7 shows an
example of a rule where the SUT creates a task. The input
parameter �	
�.	�� is an integer that is supplied with the
value using a so-called domain generator
�	
�.	�����	��, which generates a set of parameter
values. The rule has a guard that checks if the task can be
initialized. If the guard is satisfied, the state variables are

448

updated by the rule method, and the corresponding
requirement cES1005 is captured for traceability. The result
parameter is used as a parameter of the rule method, instead
of a return code, because we let Spec Explorer choose
parameter values automatically that satisfy the Boolean
condition given in the /��
�����0%
���� method. This
allowed us to configure the rule method to test nominal cases
(result = true) and off-nominal cases (result = false).

12���3�
�������
�	����+��
�
%����	
�$1���	��$4�	
�.	�����	��4&3������	
�.	�� �
�������
���&��
�����������	�
'�	��
�,�/	�%����	
�$�	
�.	��&��
����/��
�����0%
����$��	�
'�	��
�,,���
���&��
����������
������5�
	�������
�	���+	��	���
0����
����6

�	
�$�	
�.	��&��
�����#$��	�
'�	��
&�2�(��������0/	�����$4�7'899:4&��
*�

Figure 7: A rule method fragment to create a task.

Figure 8 shows an example of a guard that is used in the
previous rule. This guard makes sure that a task can only be
created if it is not already created, by checking that the
�	
��	�	�	� doesn’t already contains the �	
�.	��.

�������
�	���������/	�%����	
�$�����	
�.	��&��
�����������;�	
��	�	�	�0/���	��
���$�	
�.	��&��
*�

Figure 8: The guard that checks if a task exists.

4.1.3 State filters
A State filter excludes states that violate a condition. Figure
9 shows an example of a state filter, which excludes states
that violate the bounds of the model’s configuration
parameters, such as the maximum number of tasks, pipe
depth, etc. In our model program, we also configure the state
filters so that we can generate off-nominal tests that violate
the boundary conditions of configuration parameters and
check whether the SUT actually fails or not.

1'�	��<�����3�

�	���������'�	��<�����2�����
���������
���������������;=	
�	>���������'�?�$&�@@���������
���������	
��	�	�	�0/������,�/��
�	��
0�6AB6����
����*�
*�

Figure 9: State filter that excludes the unwanted states.

4.1.4 Accepting state conditions
Accepting states serve as a final state where each test case
can successfully end. This means that at the end of the test
case the system will be in a stable state for further testing.
Accepting state conditions guide the model exploration
algorithm to reach a final state with a certain property that
applies to each test case. Figure 10 shows an accepting state
condition where all tasks are deleted.

16��������'�	��/��
�����3�

�	���������6��������'�	��$&��
�������������	
��	�	�	�0/�����,,�9��
*�

Figure 10: Forcing all test cases to delete all child tasks.

4.1.5 Model verification using invariants
The model program needs to be verified for modeling errors.
The verification is done with the help of state invariants,
which must hold true at every state during the model analysis
phase. Figure 11 shows an example of a state invariant that
the model program can always delete a task it has created,
which is requirement cES1006.1 in the requirement
specification. By creating the state invariants for each of the
requirements, we were able to formally verify that the model
program is correct.

���%#�	��	
���
������	��?�
 �����	��	�-	�
����
�����
��
1'�	��%�+	��	��3�
�������
�	���������%����������	
�$&�����
�����������;�	
��	�	�	�07>�
�
$��,!���
����;/	��������	
�$�0���&&��
*�

Figure 11: State invariant example.

If we change our rule methods to allow deletion of non-
existing tasks, then we would violate the state invariant in
Figure 11, resulting in a modeling error. Figure 12 shows
that a modeling error has occurred in state S7.

Figure 12: An invariant violation example.

4.1.6 Model exploration to generate FSMs
The goal of the model exploration step is to generate an FSM
from the model program. It is often the case that the default
exploration will run out of memory because, for example,
the parameters of rule methods are often unbounded (e.g. int
types). The tester must make the model program’s state
space finite by using the constructs of the Spec Explorer tool,
which provides a scripting language called Cord to define
so-called machines to make the exploration finite. Machines
can be viewed as finite slices of an infinite state space. To
obtain a visual representation of the model program as an
FSM, the tester has to configure the model program using
the Cord scripting language. There are two types of
machines the tester has to create, a machine for exploring the
model and one to generate test cases, see Section 4.2.

4.2 Layered testing using scenarios
Scenarios are used to limit the behavior of the model
program to a selected subset of features to be tested. Our
strategy is always to first test the most basic features before
testing more advanced features and combinations of
features. We achieve this by slicing the model program in
different ways. This strategy helps in making the generated
test cases easier to understand and debug. Figure 13 shows

449

an example of a scenario to only test create (or delete) tasks
and pipes. The underscore symbol (_) indicates that we want
Spec Explorer to supply our rule methods with appropriate
parameters in such a way that the result parameter will be
true. In this testing scenario, the tester wants to only test
nominal SUT usage, that’s why the return code of the all
functions are all restricted to ����. Off-nominal scenarios
are tested by replacing� ���� with the underscore symbol
(_), which will cover #	�
� return code. The composition
operator CCC is used here to compose multiple actions,
which is also used for composing different machines later.

�	����������
'���	���$&���
��%����	
�$B ����&"�CCC��������	
�$B ����&"�CCC������
��/��	������$B B B ����&"�CCC������
����������$B B ����&"��
*�

Figure 13: An example scenario specific machine.

Figure 14 shows a machine for exploration of the sliced
model. It is a combination of the scenario in Figure 13 and
the default model program machine called ��
�������	�.

�	����������
�����	�$&���
�������
'���	����CC���
�������	��
*�

Figure 14: An example machine to generate an FSM.

To generate a visual FSM, the tester explores a machine.
Spec Explorer will try to apply every rule, apply filters to
remove unwanted states and verify model invariants. Figure
15 shows an example of a generated FSM based on the
machine in Figure 14, where the green circle is the accepting
state in which all tasks are deleted. The intermediate states
S1 and S3 are not shown because we collapsed the call and
return actions into one action, a visualization option of the
tool.

Figure 15: Generated FSM for Figure 14.

4.2.1 Generating the test cases
In order to generate test cases, the tester first creates a
machine for test generation. Spec Explorer can construct test
cases with two strategies, namely short tests and long tests.
For both strategies, a full path coverage of the FSM is
guaranteed, because both strategies contain at least one test
case where each step or transition is taken. Short tests are
basically the shortest paths taken through the FSM that ends
in an accepting state. The generated short test cases are easy
to read and debug when a test case fails. On the other hand,
the generated long tests are generated from a long path taken
in the model that ends in an accepting state. The exploration

takes as many steps as it can, looping around transitions,
attempting to trigger off-nominal scenarios, and ending in an
accepting state. With this strategy, fewer and longer test
cases are generated. If a tester wants to run test cases that
could run for hours and test the system more
comprehensively, then long tests would be the better option.
Figure 16 shows a machine for generating short tests. By
exploring this machine, the tester gets a visual representation
of each test case, see Figure 17. The grey state is the starting
state and the green circle is the accepting state. Similarly,
long test sequences can be generated by setting the strategy
to ������
�
.

�	����������
$&���
�������
��������
���	
�
�-�����
��	�����,�
4
������
�
4�#�������
�����	�$&�
*�

Figure 16: Machine to generate test cases of Figure 15.

Spec Explorer can also generate test code for each test case
chain in Figure 17. The generated test cases are in C#,
which is the language Spec Explorer supports.

Figure 17: Generated test cases from Figure 14.

4.2.2 Composition of scenarios for testing
Once the basic scenarios are tested, the tester composes the
already tested scenarios to test for new and complex
combinations of off-nominal scenarios. Figure 18 shows
how the '��5�
��'���	��� is composed with the existing
����'���	��� from Figure 13. Exploration of this new
machine will result in the FSM in Figure 19.

�	������'��5�
��'���	���$&��
�5�'��
�����$B B B ����&"�CCC�'��
�����$B B B ����&"��
*�
�
�	����������
�����	�D���'��5�
��$&���
�$����
'���	����CCC�'��5�
��'���	���&�CC���
�������	��
*�

Figure 18: Composition of two scenarios.

450

Figure 19: Generated FSM of the composed scenarios.

4.3 Capturing the requirements
Spec Explorer allows a tester to capture requirements in the
model program. For example, Figure 20 shows the FSM
where the requirement ids are captured for each transition
based on the SUT’s requirement specification.

Figure 20: Generated FSM with captured requirements.

4.3.1 Slicing for requirements coverage
The tester can also slice the model program to cover a set of
requirements of interest. Figure 21 shows a machine that
slices the ����
�����	� machine for requirements using
the selective strategy of Spec Explorer. It is also possible to
slice the model program by a given requirement id, too.

�	����������D���2�(��������
�����	�$&���
�������
��������(�����������+��	����
����-�����
��	�����,�4
������+�4�#�������
�����	�$&�
*�

Figure 21: Slicing for requirements coverage.

When the machine is constructed using the selective
strategy, a step is only create once for every requirement that
is captured. Figure 22 shows the resulting FSM from
exploring the machine. Since this FSM is constructed with
the selective strategy, the transition S4 -> S0 in Figure 20 is

eliminated. Figure 23 shows the generated test cases, with
requirement ids for each step, for the FSM in Figure 22.

Figure 22: Generated FSM for Figure 21.

Figure 23: Generated test cases with requirement ids.

4.4 The Adapter
At this this point, our test cases are in C# and also tightly
coupled to the Visual Studio environment. The adapter
bridges the C# test cases generated to the SUT’s C language.

4.4.1 Converting test cases in C# to C
To convert the generated test cases to the C language, we
have defined templates which define the code structure of
the generated test cases. The template allows the tester to
manipulate the structure of the test cases easily. Figure 24
shows a basic structure of a template. For example, the
�7'�B'7E57./7 is a placeholder for the adapter to replace
the generated test case in C. The /��	������ and
6

���2�
���
 labels are example actions that are
parameterized and will be replaced by the corresponding
concrete values determined by the model program.

451

���
����
�/	
�.	��!B�	��$�+��
�&���
� ���FG�'�	��
�,�9��
� ��7'�B'7E57./7!�
*�
H������/��	�������
����'�	��
�,�/��	������B-$�6'�B��	
�.	��! �����
�%�7B�����.	��! �����������!&��
H��
�/��	�������
�
H������6

���2�
����
� 6''72�B�7'�$'�	��
���>�����
2�
���! �
'�	��
 �I���
�/	
�.	��!J&��
H��
�6

���2�
����
�

Figure 24: Template fragment for converting C# to C.

For example, consider the transition S4 -> S8 in Figure 23
and examine how the action /��	������$9 9 8 ����&
will be converted into C code. The adapter will exchange the
first three numbers for the placeholders in the /��	������
label, first the task name, second pipe name and last the pipe
depth. The �>�����
2�
��� placeholder in the
6

���2�
���
 label will be exchanged with the
)����	��value in the action based on the model program.
One benefit is that we were able to change the template and
generate test cases to fit our two testing strategies that were
discussed in Section 3, without making any changes to the
model. For example, we can change the message ids to avoid
interference when multiple parent tasks are running as in test
strategy 2.

4.4.2 Traceability
When the test cases were generated, the tester automatically
gathered data on which requirements were covered by a test
case, see Table 1. MBT helps maintaining traceability links
between test cases and requirements, which is important for
safety-critical systems.

Table 1: Generated traceability matrix (fragment)
Test suite Requirement covered
CreateDeletePipeTestSuite cES1005
CreateDeletePipeTestSuite cES1006
SubUnsubTestSuite cSB4303
SendRcvMsgTestSuite cSB4305
SendRcvMsgTestSuite cSB4308

�

4.4.3 Testing config parameter bounds
The model program has configuration parameters that bound
the size of the generated model (e.g. Max number of pipes,
Max number of apps). The SUT also has configuration
parameters, defined in the C header files. Thus, the SUT’s
configuration parameters must be consistent with the model
program because we want to make sure that the test
assertions are consistent with the bounds of the configuration
parameters. E.g., when the model creates a pipe of depth that
exceeds the configured limit, that off-nominal input should
result the SUT to fail. We want ensure that the SUT will
behave properly by using the same configuration as in the
model. We generate a header file for every test suite using
the configuration of the model program.

5 ANALYSIS
5.1 Code Coverage of the SUT
MBT is a black-box testing technique, therefore it may not
cover all code statements. It may, e.g. be impossible to cover
behaviors that are undocumented as requirements because
they were not known to the tester during modeling. We
measured the coverage using gcov. To be fair to MBT, we
only measured the code coverage for the API functions that
were part of the model program (i.e. only code belonging to
the SB functionality that is reachable directly or indirectly
by calling the API functions), so the coverage discussed here
does not apply to the whole SUT, although we tested and
found defects in other modules that are transitively used by
the SB module. The line coverage of the functions that were
modeled is displayed in Table 2, excluding the source code
comments. Note that the init and delete task functions are
part of a different module that the SB uses. But in order to
test the SB we have to initialize some tasks and delete them
afterwards. Thus, we modeled these two “helper” functions.

The '��
�
� function, which publishes a message, has the
lowest code coverage because our basic model program was
not handling the off-nominal scenario of sending malformed
messages, which is not that explicit in the requirement
document. Thus, a large block of error handling code was
not covered. Similarly, we investigated the source code of
the subscribe function and found that there are a few hidden
requirements that were not modeled. For example, there is a
hidden requirement that limits the maximum number of
messages a subscriber can subscribe to, which was not
included in the model. Although the source code size is
small, the testing challenge is non-trivial due to concurrency.

Table 2: Code coverage of the SUT
Function Lines hit Coverage
%����	
�� 26 of 40 65%
�������	
�� 21 of 29 72.4%
/��	������� 48 of 51 94.1%
����������� 48 of 54 88.9%
'��
������ 63 of 82 76.8%
5�
��
������ 49 of 61 80.3%
'��
�
�� 71 of 130 54.6%
2����+��
�� 35 of 35 100.0%

Total 361 of 482 74.9%

5.2 Types of Issues Found
This subsection provides answers to the questions in the
introduction by explaining the different types of issues that
were detected by MBT, see Table 3.

Table 3: Types of issues found
Issue Type Number of issues
Duplicate requirements 1
Unspecified requirements 12
Issues in the test infrastructure 4
Functional issues in the SUT 5

452

5.2.1 Requirements Issues
Issue 1: One pair of duplicate requirements was detected.
This issue was detected when the tester tried to, for
traceability purposes, add the requirement number to the
model program. When searching for the requirement, the
tester found two requirements with two different numbers
for this one behavior. This issue is already removed in the
current version of the requirements document.
Issue 2: Twelve unspecified requirements were detected.
The tester, when creating the model program, realized that a
certain transition was necessary but couldn’t find a
requirement for it, so therefore captured such requirements
as unspecified. Figure 25 shows an FSM that has missing
requirements for some transitions taken by the model
program. The missing requirements were captured with the
keyword “Unspecified”, indicating they were not in the
requirement document. Most of the unspecified
requirements are off-nominal, for example, how the SUT
should react to deleting a pipe which was already deleted is
not discussed in the requirements document, although
handled by the API with appropriate failure return codes.

Figure 25: FSM with unspecified requirements.

5.2.2 Issues in the test infrastructure
The test infrastructure includes the model program,
machines, adapter in Visual Studio, and the C wrappers of
the SUT. It is worth noting that the generated test cases
identified issues in the test infrastructure. Such issues can be
viewed as false-positives from the SUT standpoint, but from
an MBT point of view they are true-positives.
Issue 1: Our wrapper was not translating some of the test
cases correctly. This issue was detected when we were
deleting pipes that were not created. In our wrapper we were
keeping track of which pipes existed and if a pipe did not
exist, the container that was keeping track of the pipes would
return pipe name as “0” for that pipe. In the SUT the pipe
with the name “0” is owned by other tasks of the SUT, so
rather than trying to delete a non-existing pipe, the wrapper
told the child task to delete the pipe of some other tasks.
Thus, we were not getting all expected coverage.
Issue 2: Thread race condition. We were using a logger that
was protected by semaphores when an action wanted to log.
When we were deleting a task there was a race condition
between logging and deleting the task, sometimes resulting
in task deletion but not giving up the semaphore.

Issues 3 and 4: Duplicate subscribe or unsubscribe fails.
These two issues turned out to be a modeling error because
the tester misunderstood two of the requirements. The tester
assumed that subscribing to a message which was already
subscribed to, should return false, but the test cases failed
because SUT returns true as per the requirements. Similarly,
unsubscribing an already unsubscribed message returns true
but our model program wrongly assumed that it should be
false. We fixed the model and regenerated a test suite.

5.2.3 Functional Issues in the SUT
All functional issues in the SUT were detected by the
generated test cases using MBT. All functional issues were
reviewed by NASA team, confirmed to be previously
unknown and included into the discrepancies report for
further actions. Most of the detected issues are off-nominal.
Issue 1: Child task was not deleting all of its resources upon
exit. The child task should delete resources such as
semaphores and message pipes when the parent sends a
cleanup command, but in one case cleanup did not occur.
Issue 2: Infinite loop when a child task exits. The SUT
incorrectly stayed in an endless loop until being terminated
from the keyboard. We found that a test case sequence
corrupted the internal state variables of the SUT.
Issue 3: A pipe could receive more messages than allowed.
This issue was found when a test case created a pipe with
pipe depth one, only allowing the pipe to store one message
at a time. When the pipe subscribed to a message and that
particular message was sent twice by a publisher, the pipe
could read the message twice even though its pipe depth was
only one. This issue has been resolved by the cFS team.
Issue 4: Creating the same message pipe twice will not allow
it to be deleted. This issue was found when a test case sent
the create pipe command (with the same data parameters)
twice followed by the delete pipe command. This off-
nominal test case has failed because the internal variable of
the SUT that stores the generated pipe name after the first
call was corrupted when called twice in a row.
Issue 5: Dynamic loading and unloading of modules with the
same entry point function name has failed. This issue is
caused by the OS abstraction layer (OSAL) of the cFS,
which we used to run the test cases. We compiled each
parent into a shared object and dynamically loaded using
OSAL functions. However, all our parent code had the same
entry point function name. This caused a problem in that all
but the first shared object were never executed. Thus, we
were running only the very first test case because the
dynamic unloading feature did not work as expected. To
overcome this issue, we generated a unique entry function
point name for each of the test case and ran all test cases.

5.3 Scalability
If the model program is not carefully configured, the default
exploration for generating an FSM crash the tool after
generating 76,534 states and 75,926 transitions, which
happened in our case. A model program with just 10 rule
methods with each method taking 3 arguments (even as a
Boolean type) will result in a state space of several million

453

states. This is a severe problem when testing for off-nominal
scenarios such as deleting an already deleted pipe or
incorporating all combinations of off-nominal parameter
inputs too. Thus, to scale MBT we had to apply some
modeling tactics using scenarios and abstractions. 1) We
sliced the default infinite state space by defining the
scenarios of interest, starting from the most basic features to
test. Scenarios helped in reducing the state space because we
added constraints on rule methods and their parameter
combinations to test. 2) We reduced the size of the state
space by defining an abstraction on the message pipe. E.g.,
abstraction of the message pipe by only counting the number
of messages, instead of keeping track of the actual messages,
reduced the size of the state space to half because
permutations of message ordering is abstracted way. This
abstraction is useful to test whether the SUT delivers a
message, but not to test the order of delivered messages. This
is an example of a modeling trade-off to scale MBT.

6 RELATED WORK
In our own work, we have evaluated model-based testing on
different types of real-world systems [13] [1] [7] [2]. This
paper contributes our experience of testing a flight SB. In
[13], we tested NASA’s ground system. We addressed the
testing challenges when multiple tasks are running
concurrently in contrast to [13]. The modeling paradigm in
this paper allows for generation of relatively large state
spaces in contrast to the FSMs that were designed manually
in [13]. Sijtema et al. have used MBT to test a SB, developed
at Neopost Inc [8]. The bugs they reported are similar to our
bugs. Their models are based on a powerful formal language
called mCRL2, in contrast to our models which are
programmed in a C# like language, making our models
easier to construct for testers who are not trained in formal
methods. We used code coverage to identify behaviors that
were missed in the model, and to update the model to cover
missing behaviors for achieving better coverage. Kicillof et
al. [16] combined model-based testing for test procedure
generation with symbolic execution (at code level) for data
parameter generation in order to achieve code coverage for
.NET applications. Modex tool [17], which extracts models
from C code for model checking, provides stronger
confidence than our testing, however the user needs to know
the implementation details of the SUT.

7 Conclusions
Safety-critical systems must be extensively tested, not only
for compliance to requirements, but also for behaving
reliably for off-nominal scenarios. MBT has shown
promising results in addressing these issues. However,
concurrent systems cannot be tested using MBT without
modifications. In this paper, we evaluated the effectiveness
of our MBT-based technique by applying it on NASA‘s cFS
software bus module using the Microsoft‘s Spec Explorer
tool. We described our test automation architecture for
testing the inter-task communication. We showed that it is

feasible to apply to a SB such as the one CFS uses and that
the technique can detect four different types of issues.

Acknowledgments

This work is partly supported by NASA’s Office of Safety
and Mission Assurance (OSMA) Software Assurance
Research Program (SARP) and NSF CPS award “1446675”.
We thank Martha Wetherholt, Markland Benson, Steven
Hard, and Kenneth Rehm for their support. Asa Bjork
Valdimarsdottir helped in constructing the test infrastructure.

8 References
[1]. C. Schulze, D. Ganesan, M. Lindvall, D. McComas, and A.

Cudmore, “Experience Report: Model-based Testing of
NASA’s OSAL API,” in ISSRE, 2013.

[2]. C. Schulze, D. Ganesan, M. Lindvall, R. Cleaveland, D.
Goldman, “Assessing model-based testing: an empirical
study in industry.” In Proc. ICSE ‘14 – SEIP, 135-144.

[3]. Core Flight System, https://cFS.gsfc.nasa.gov/
[4]. D. Ganesan, M. Lindvall, C. Ackermann, D. McComas, and

M. Bartholomew, “Verifying architectural design rules of the
flight software product line.” In Proceedings of the 13th
International Software Product Line Conference (SPLC '09).
IEEE Computer Society Press, 161-170.

[5]. D. Ganesan, M. Lindvall, D. Mccomas, M. Bartholomew, S.
Slegel, B. Medina, R. Krikhaar, C. Verhoef, L. Montgomery,
“An analysis of unit tests of a flight software product line.”
Sci. Comput. Program. 78, 12, 2360-2380, 2013.

[6]. H. Femmer, D. Ganesan, M. Lindvall, and D. Mccomas,
“Detecting Inconsistencies in Wrappers - A Case Study.” In
Proceedings of the ICSE ‘13 – SEIP, 2013.

[7]. M. Lindvall, D. Ganesan, R. Árdal, and R. Wiegand,
“Metamorphic model-based testing applied on NASA DAT:
an experience report.” In Proceedings of the 37th ICSE -
SEIP, Vol. 2, 129-138.

[8]. M. Sijtema, A. Belinfante, M. I. A. Stoelinga, and L.
Marinelli, “Experiences with formal engineering: Model-
based specification, implementation and testing of a software
bus at Neopost.” Sci. Comput. Program. 80, 188-209.

[9]. M. Utting and B. Legeard, “Practical Model-Based Testing:
A Tools Approach,” Kaufmann Publishers Inc., 2007.

[10]. P. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec,
“The many faces of publish/subscribe.” ACM Comput. Surv.
35, 2 (June 2003), 114-131.

[11]. R. V. Binder, B. Legeard, and A. Kramer, “Model-based
Testing: Where Does It Stand?,” ACM Queue 13, 1.

[12]. Spec Explorer, www.microsoft.com.
[13]. V. Gudmundsson, C. Schulze, D. Ganesan, M. Lindvall, and

R. Wiegand, “An Initial Evaluation of Model-Based
Testing,” in IEEE 24th ISSRE, 2013.

[14]. W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman,
“Model-based quality assurance of protocol documentation�:
tools and methodology,” Softw. Testing, Verif. Reliab., vol.
21, no. 1, pp. 55–71, 2011.

[15]. H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable
model-based testing through test case diversity,” ACM Trans.
Softw. Eng. Methodol. 22, 1, Article 6 (March 2013).

[16]. N. Kicillof, W. Grieskamp, N. Tillmann, and V. Braberman,
“Achieving both model and code coverage with automated
gray-box testing,” Proceedings of the 3rd international
workshop on Advances in model-based testing - A-MOST
’07, pp. 1–11, 2007.

[17]. G.J. Holzmann and M.H. Smith, “Software Model Checking:
Extracting verification models from source code Software,”
Testing Verification and Reliability, 11 (2), pp. 65-79, 2001.

454

