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Abstract— We formulate several notions of
decentralized opacity for cyberphysical systems
in the presence of multiple adversarial ob-
servers. Broadly speaking, we study the follow-
ing cases: i) the presence or lack of a centralized
coordinator, and ii) the presence or absence of
collusion among the adversaries. In the case of
colluding adversaries, we derive a condition for
non-opacity that depends on the structure of
the directed graph representing the communi-
cation between adversaries. Finally, we define a
notion of opacity where the condition that the
outputs be indistinguishable is relaxed.

I. INTRODUCTION

Cyberphysical systems (CPSs) integrate com-
munication, control, and computation with
physical processes. Examples of CPSs include
power systems, water distribution networks,
and medical devices. A consequence of this in-
teraction between computers and the physical
system is that significant material damage can
be caused by an attacker who is able to gain
access to the system remotely. There have been
several instances of remote attacks on CPSs.
Examples include [1], [2], while techniques to
alleviate threats are suggested in [3].

To gain illicit access to a CPS (or any other
system), a prospective attacker must be able
to extract useful information pertaining to the
system, which can then be used by him or
her to subvert the operation of the system.
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Thus, information critical to nominal opera-
tion should be safeguarded in a well-designed
system; this motivation has led researchers to
develop approaches for analyzing how opaque
the system behavior is to an adversary. Opacity
was initially formulated as a technique to study
cryptographic protocols in [4], and is a property
that captures whether a passive adversarial
observer can infer a "secret" of the system based
on its observations of the system behavior. It
has been defined for discrete event systems
(DESs) described by regular languages in [5],
[6]. Language based ([7], [8]) and state based
([6], [9], [10]) notions of opacity were shown
to be equivalent in [11], where algorithms to
transform one form of opacity to the other were
given. Opacity was compared to properties of
DESs like detectability and diagnosability, and
privacy properties like secrecy and anonymity
in [12]. A subsequent paper [13] defined opacity
for DESs in a decentralized framework with
multiple adversaries, each carrying out its own
observation of the system. Two cases were stud-
ied: first, in the absence of a centralized coor-
dinator, and second, when the agents reported
their observations to a coordinator. We cast both
these cases within our framework, and study a
third case when the agents communicate among
themselves in the absence of a coordinator.

Although this theory is quite rich, it suffers
from the drawback that states in a DES are
discrete. In CPSs like power systems and water
networks, it is common for the states to take
values in a continuous domain. A notion of opac-
ity for continuous state systems with a single
adversary was first defined in [14]. The CPS was
modeled as a discrete-time linear time invariant
(DT-LTI) system, and tools from control theory
were used to study opacity for such systems. A
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set of secret states was defined to be strongly
k−ISO (k−initial state opaque) with respect to
a set of nonsecret states if the outputs at time
k of every trajectory starting from the set of
secret states could not be distinguished from
the output of some trajectory starting from the
set of nonsecret states. Necessary and suffi-
cient conditions for k−ISO were established in
terms of sets of reachable states of the system.
Further, under certain conditions, k−ISO was
shown to be equivalent to output controllability
of a system obeying the same dynamics, but
with different initial conditions. In this paper,
we extend this work by studying opacity for the
case when there is more than one adversarial
observer.

A. Outline of Paper
We briefly review the definition of opacity for

LTI systems with a single adversarial observer
in Section (II). Section (III) presents the main
results of this paper. We formulate several no-
tions of decentralized opacity for LTI systems
with multiple observers, depending on whether
or not there is a centralized coordinator, and the
presence or absence of communication among
the adversaries. Conditions to ensure decentral-
ized opacity are formulated in terms of reach-
able sets of states. In the case of collusion
amongst the adversaries, we derive a condition
to ensure non-opacity in terms of the structure
of the communication graph. The necessity of
the indistinguishability of outputs in the exist-
ing definition of k−ISO is relaxed in Section
(IV), where we define a notion of ε−opacity. We
conclude in Section (V) by presenting possible
future directions of research.

II. OPACITY FOR LINEAR SYSTEMS

Consider the system:

x(t+1)= Ax(t)+Bu(t)
x(0)= x0 ∈ X0

y(t)= Cx(t) (1)

where x ∈ Rn,u ∈ Rm, y ∈ Rp, and A,B,C are
matrices of appropriate dimensions containing
real entries.

Let K be the instants of time the adver-
sary makes an observation of the system. The
subscript s (ns), when appended to the states,
inputs, and outputs, will correspond to trajec-
tories that start from the set of initial secret
(nonsecret) states. The adversary is assumed to
have knowledge of the initial sets of secret and
nonsecret states, Xs and Xns, the system model
(A,B), and its own observation map C. Further,
we assume that it has unlimited computing
power, in that it will be able to compute the
sets of reachable states at time k. Its goal is to
deduce, on the basis of observing the system at
times k ∈ K , whether the system started from
a state in Xs or not. We recall the definition of
strong k−ISO from [14].

Definition 2.1: For system (1), given Xs, Xns ⊆
X0 and k ∈ K , Xs is strongly k−ISO with
respect to Xns if for all xs(0) ∈ Xs and for every
sequence of admissible controls us(0), . . . ,us(k),
there exist an xns(0) ∈ Xns, and a sequence of
admissible controls uns(0), . . . ,uns(k) such that
ys(k)= yns(k).

Xs is strongly K −ISO with respect to Xns
if it is strongly k−ISO for all k ∈K .

This means that starting from any secret
state and applying any sequence of k admissible
controls corresponding to the instants the ad-
versary makes an observation, the system will
reach a state that is indistinguishable from a
state reached by the application of some admis-
sible control sequence of length k, starting from
some nonsecret state. A weaker notion of k−ISO
has been defined in [14], but we will not need it
in this paper.

That the adversary does not continuously ob-
serve the system in the above definition is mo-
tivated by the following reasons: first, it might
not want to reveal its presence to the system,
and second, it might not have the resources to
continuously monitor the system. In this paper,
the set K is arbitrary. Formulating observation
strategies for the adversary is an interesting
direction of future research.

Let Uk
s := {us(0), . . . ,us(k − 1)} and Uk

ns :=
{uns(0), . . . ,uns(k−1)}. Let Xs(k) and Xns(k) de-
note the sets of reachable states in k steps,
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Fig. 1: Representation of strong k−ISO

starting from nonempty sets Xs and Xns respec-
tively. That is,

Xs(k)= ⋃
x0∈Xs

⋃
Uk

s

{x : x(i+1)= Ax(i)+Bu(i),∀i < k},

Xns(k)= ⋃
x0∈Xns

⋃
Uk

ns

{x : x(i+1)= Ax(i)+Bu(i),∀i < k}.

Theorem 2.2: The following hold:
1) Xs is strongly k−ISO with respect to Xns

if and only if CXs(k)⊆ CXns(k).
2) Xs is strongly K −ISO with respect to Xns

if and only if CXs(k)⊆ CXns(k) for all k ∈
K .

Proof: The proof can be found in [14].
Figure 1 illustrates strong k−ISO in terms of
these sets of states.

The above result indicates that it suffices
for the adversary to check membership of the
output at time k in the sets CXs(k) and CXns(k)
to determine opacity of the set of secret states.

III. DECENTRALIZED OPACITY FOR LINEAR

SYSTEMS

In this section, we define several notions of
decentralized opacity in the presence of multiple
adversaries. The presence or absence of collu-
sion among the adversaries, and the presence or
absence of a coordinator that aggregates infor-
mation based on the adversaries’ observations,
is the distinguishing feature, and a definition of
decentralized opacity is proposed in each case.
The system model is identical to (1) except that
there are multiple adversaries, each seeing an

output corresponding to its observation map Ci.
As in the single adversary case, every adversary
is assumed to have knowledge of the initial sets
of secret and nonsecret states, Xs and Xns, the
system model (A,B), and its own observation
map Ci, and is assumed to have unlimited
computing power.

x(t+1)= Ax(t)+Bu(t)
x(0)= x0 ∈ X0

yi(t)= Cix(t); i = 1,2, . . . , l (2)

where x ∈ Rn,u ∈ Rm, yi ∈ Rpi , and A,B,Ci are
matrices of appropriate dimensions containing
real entries. Throughout the paper, we will as-
sume that all of the adversaries observe the
system at the same time instants in the set K .

A. No Coordinator, No Collusion

In this case, the agents do not communicate
with each other, and there is no coordinator.
Opacity of the secret is achieved when it is
simultaneously opaque with respect to every
adversary.

Definition 3.1: For system (2), given Xs, Xns ⊆
X0 and k ∈ K , Xs is strongly decentralized
k−ISO with respect to Xns if for all xs(0) ∈ Xs
and for every sequence of admissible controls
us(0), . . . ,us(k), there exist an xns(0) ∈ Xns, and a
sequence of admissible controls uns(0), . . . ,uns(k)
such that ys i(k)= yns i(k) for all i ∈ {1,2, . . . , l}.

Xs is strongly decentralized K −ISO with
respect to Xns if it is strongly decentralized
k−ISO for all k ∈K .
As in the single adversary case, we have a
necesary and sufficient condition for for decen-
tralized opacity in terms of sets of reachable
states in k steps.

Theorem 3.2: The following hold:
1) Xs is strongly decentralized k−ISO with

respect to Xns if and only if Ci Xs(k) ⊆
Ci Xns(k) for all i ∈ {1,2, . . . , l}.

2) Xs is strongly decentralized K −ISO with
respect to Xns if and only if Ci Xs(k) ⊆
Ci Xns(k) for all k ∈ K , and for all i ∈
{1,2, . . . , l}.
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Proof: The proof follows from extending the
proof of Theorem 2.2 to multiple adversaries
with observation maps C1, . . . ,Cl .
The following result explores the relationship
between decentralized k−ISO for a set of adver-
saries and k−ISO for a single adversary with an
aggregated observation map.

Proposition 3.3: Xs is strongly decentralized
k−ISO with respect to Xns and adversaries with
observation maps C1, . . . ,Cl if Xs is strongly
k−ISO with respect to Xns for the single ad-
versary with the aggregated observation map
C̄ := (

CT
1 CT

2 . . . CT
l
)T .

Proof: Xs strongly k−ISO with respect to
Xns is equivalent to C̄Xs(k) ⊆ C̄Xns(k). This
means that for every xs(k) ∈ Xs(k), there exists
an xns(k) ∈ Xns(k) such that C1xs(k)= C1xns(k),
. . . , Cl xs(k)= Cl xns(k). Thus, we have Ci Xs(k)⊆
Ci Xns(k) for all i ∈ {1, . . . , l}, which is equivalent
to Xs being strongly decentralized k−ISO with
respect to Xns.
It is to be noted that strong decentralized k−ISO
need not necessarily ensure strong k−ISO with
respect to an adversary with the aggregated
observation map since, the nonsecret states in
Xns(k) and the corresponding control sequence
for each adversary may be different.

B. With Coordinator, No Collusion
Here, we assume that there is a coordinator,

whose role is to poll the observations of each
adversary, and decide on co-opacity according
to some (predefined) rule. The coordinator does
not have knowledge of the system model or
the adversaries’ observation maps. In fact, our
model is such that the coordinator cannot do any
better even if it knows the system model or the
observation maps. It can be viewed as an agent
whose role is to ensure that the whole is greater
than the sum of its parts.

Formally, the coordinator communicates to
the adversaries the time instants K , at which
the system needs to be observed. At each k ∈
K , agent i observes yi(k) = Cix(k). The agents
communicate φi(yi(k)) to the coordinator, where
φi :Rpi → 2R

n×Rn
, and

φi(yi(k)) := {(x1, x2) ∈ Xs(k)× Xns(k) : Ci x1 = Ci x2 = yi(k)}

System

Coordinator

Fig. 2: Coordinated Decentralized Opacity

Thus, φi(·) returns secret-nonsecret state pairs
that give the same output yi(k) at time k.

The coordinator then computes a function
Ψ(k) := Ψ(φ1(y1(k)), . . . ,φl(yl(k))), where Ψ :
(2R

n×Rn
)l → 2R

n×Rn
. Thus, the coordinator plays

the role of gathering the outputs of the obser-
vations of each adversary, and composing them
to then decide on opacity. An example of a valid
coordinator function is Ψ(k)=⋃

i(φi(Cix(k))).
The scheme is shown in figure 2 for the case

of four adversaries.
Definition 3.4: For system (2), given Xs, Xns ⊆

X0 and k ∈ K , Xs is strongly co-k−ISO with
respect to Xns and Ψ if for all xs(0) ∈ Xs
and for every sequence of admissible controls
us(0), . . . ,us(k), there exist an xns(0) ∈ Xns, and a
sequence of admissible controls uns(0), . . . ,uns(k)
such that Ψ(k) is nonempty.

Xs is strongly co-K −ISO with respect to
Xns and Ψ if it is strongly co-k−ISO for all k ∈
K .

Before presenting the main result of this sec-
tion, we provide an alternative characterization
of strong k−ISO in terms of the map φ (the
subscript on φi is dropped since we consider
only a single adversary in this case). Further,
it is important to note that the functions φi
and Ψ return a set of pairs of states at time k.
This information needs to be used to determine
opacity of the initial set of secret states with
respect to the initial set of nonsecret states.

We extend the definition of φ to sets of outputs
at time k. Let φ(CX (k)) := ⋃

{φ(y(k)) : [y(k) =
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Cx(k)] ∧ [x(k) ∈ X (k)]}. For (x1
i , x2

j ) ∈ Xs(k) ×
Xns(k), in a slight abuse of notation, we treat
each x1

i and x2
j as a set. This will allow us to

define
⋃

i, j(x1
i , x2

j ) := (
⋃

i x1
i ,

⋃
j x2

j ), where
⋃

i x1
i ⊆

Xs(k), and
⋃

j x2
j ⊆ Xns(k).

Proposition 3.5: Xs is strongly k−ISO with
respect to Xns if and only if φ(CXs(k)) =
(Xs(k), X ′

ns(k)), where X ′
ns(k) := {x ∈ Xns(k) : Cx ∈

CXs(k)}.
Proof: Let strong k−ISO hold. Then,

CXs(k) ⊆ CXns(k) (Theorem 2.2), and
φ(CXs(k)) = (Xs(k), X ′

ns(k)), where X ′
ns(k)

is as defined above.
If φ(CXs(k)) = (Xs(k), X ′

ns(k)), then ∀x1 ∈
Xs(k), ∃x2 ∈ X ′

ns(k) ⊆ Xns(k) such that Cx1(k) =
Cx2(k). This gives CXs(k)⊆ CXns(k), which im-
plies strong k−ISO (Theorem 2.2).

The above result says that strong k−ISO
holds if and only if the first component of φ(·)
when acting on the set of secret outputs at time
k is the entire set of reachable states at time
k, starting from Xs. Further, it also determines
the states in Xns(k) that ensure strong k−ISO.

Theorem 3.6: Xs is strongly co-k−ISO
with respect to Xns and Ψ if and
only if Ψ(φ1(C1Xs(k)), . . . ,φl(Cl Xs(k))) =
(Xs(k), X ′

ns(k)), where X ′
ns(k)⊆ Xns(k).

Proof: The proof of this result follows
from the previous result, and the definition of
co−k−ISO. The major difference is that in this
case, the first component of φi(Ci Xs(k)) can
be a subset of Xs(k). However, the coordinator
functionΨmust be such that its first component
is Xs(k).

Thus, Xs can be strongly co−k−ISO with
respect to Xns though strong k−ISO might not
hold for any single adversary.

C. No Coordinator, With Collusion

In this case, there is no coordinator, but the
adversaries are assumed to communicate among
themselves. This is a new approach, and has
not been studied for DESs. The communication
structure is represented by a directed graph
G , whose vertices are the adversaries, and G

has an edge directed from i to j if adversary j

Fig. 3: Vertices in red form a directed dominat-
ing set

can receive information from adversary i. The
goal of the adversaries is to ensure, using the
coordination structure, that Xs is not k−ISO
with respect to Xns for each of them. To this
end, we introduce the following definitions:

Definition 3.7: For the system (2), given
Xs, Xns ⊆ X0 and k ∈ K , Xs is strongly not
k−ISO with respect to Xns if Xs is not strongly
k−ISO with respect to Xns for every adversary.

Definition 3.8: Given a graph G = (V ,E ),
where V are the vertices of the graph and E ⊂
V ×V are edges, D ⊂ V is a dominating set if
every vertex not in D has a neighbor in D.

Given a directed graph G = (V ,E ), D ⊂ V is a
directed dominating set(red vertices in figure
(3)) if every vertex not in D has an incoming
edge from some vertex in D, that is, [∀u ∈ V \D,
∃v ∈ D such that (v → u) ∈ E ].

At each k ∈K , each adversary observes y(k),
determines if k−ISO holds or not, and communi-
cates (Ci,< k−ISO status>i) to its neighbors in
G . If < k−ISO status>i= 0, i.e. k−ISO does not
hold for adversary i, then a neighbor j of i in
G adopts Ci as its observation map if < k−ISO
status> j 6= 0. This scheme can be interpreted
as a dynamic version of k−ISO, in which the
adversaries change their observation maps at
times k ∈K depending on the k−ISO status of
their neighbors in G . A key assumption here
is that the time required for the adversaries to
communicate amongst themselves is much less
than the time scale of the system. The follow-
ing result provides a means to achieve strong
non-opacity without requiring non-opacity with
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respect to every adversary using the communi-
cation scheme described above.

Theorem 3.9: For the system (2), Xs is
strongly not k−ISO with respect to Xns if the
set of adversaries for which Xs is not strongly
k−ISO with respect to Xns is a directed domi-
nating set of G .

Proof: Each adversary communicates (Ci,<
k−ISO status>i) to its neighbors in G . Thus,
if k−ISO does not hold for some adversary i,
then its neighbors will also adopt the same Ci
matrix at time k. The result then follows from
the definition of a directed dominating set.

IV. ε−OPACITY

The condition that the output at times k ∈K

starting from every state in Xs be equal to the
output obtained by starting from some state in
Xns is quite strong. In this section, we postulate
that (a form of) opacity will still hold if the
outputs differ by a predefined amount. We only
consider the single adversary case; the material
can be easily extended to the decentralized no-
tions of opacity in Sections (III-A) and (III-C).
Defining ε−opacity for the case in Section (III-
B) will require more careful consideration.

Definition 4.1: For system (1), given Xs, Xns ⊆
X0, k ∈ K , and ε ≥ 0, Xs is strongly ε −
k−ISO with respect to Xns if for all xs(0) ∈ Xs
and for every sequence of admissible controls
us(0), . . . ,us(k), there exist an xns(0) ∈ Xns, and a
sequence of admissible controls uns(0), . . . ,uns(k)
such that ‖ys(k)− yns(k)‖2 ≤ ε.

Xs is strongly ε−K −ISO with respect to
Xns if it is strongly ε−k−ISO for all k ∈K .
A couple of remarks are in order before we
present the main result of this section. Notice
that ε= 0 corresponds to the definition of strong
k−ISO seen earlier. Moreover, we can derive
conditions that establish ε−opacity in terms of
sets of reachable states.

Let z be a point, and S be a set. Then, the
distance of z from S is defined as dist(z,S) :=
inf {dist(z, s)|s ∈ S}.

Theorem 4.2: The following hold:

Fig. 4: Representation of ε−k−ISO

1) Xs is strongly ε− k−ISO with respect to
Xns if and only if :

max
z∈CXs(k)

dist(z,CXns(k))≤ ε (3)

That is, the farthest a point in CXs(k) can
be from CXns(k) is ε.

2) Xs is strongly ε−K −ISO with respect to
Xns if and only if (3) holds for all k ∈K .

Proof: The proof of this result is similar to
Theorem 2.2. Figure 4 illustrates ε− k−ISO in
terms of sets of reachable states at time k.

V. CONCLUSION

We defined notions of decentralized opacity
for linear systems and considered scenarios in
the presence and the absence of a centralized co-
ordinator. The case when the adversaries could
possibly communicate among each other was
also studied. We also defined a weaker notion
of opacity, where the condition that the outputs
at time k be equal was relaxed.

We propose to extend this study by formu-
lating a theory of opacity for nonlinear systems,
and further, to switched systems and networked
systems. We also intend to investigate a possible
connection between ε− k−ISO and the notion
of differential privacy. It is our belief that this
would enable the development of a comprehen-
sive framework for opacity for general cyber-
physical systems.
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