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Abstract— We present a framework for opac-
ity in cyberphysical systems modeled as dis-
crete time linear time invariant systems. A set
of secret states is k−ISO with respect to a set
of nonsecret states if, starting from these sets
at time 0, the outputs at time k are indis-
tinguishable to a passive adversarial observer.
Necessary and sufficient conditions for k−ISO
are given in terms of reachable sets of the
system. Properties of k−ISO under unions and
intersections are verified. It is seen that while
unions of opaque sets preserve opacity, this
is not necessarily true for intersections. We
show that under certain conditions, k−ISO is
equivalent to output controllability. Finally, we
present an algorithm to compute a k−ISO set
of states, given candidate secret and nonsecret
sets of initial states.

I. INTRODUCTION

Cyberphysical systems (CPS) are entities in
which the working of the physical system is
intimately linked to the functioning of comput-
ers that influence the interactions between the
system and a controller, or among subsystems.
Since these systems are often controlled via
a network, computational resources and band-
width also affect their working. Examples of
large scale CPS include power systems, wa-
ter distribution networks, and medical devices.
While computer controlled systems are more
efficient, the sharing of information among de-
vices and across geographies makes the sys-
tem vulnerable to attacks. An attack could be
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carried out on the physical system itself, on
the computer controlling the system, or on the
communication links between the system and
the computer. A compilation of exposed vulner-
abilities in some existing systems, and means of
mitigating threats can be found in [1], [2], [3].
While the aforementioned places emphasis on
the attacker’s abilities, one could also choose to
focus on the flow of information from the CPS
to the attacker [4], [5].

Opacity is an instance of the latter, and is
a property that captures whether an intruder,
modeled as a passive observer, can infer a "se-
cret" of a system based on its observation of the
system behavior. The current state of the art in
this area studies opacity within the framework
of discrete event systems (DES) described by
regular languages [6], [7]. Techniques from su-
pervisory control can be used to enforce opacity
on a system [8], [9]. In other words, a controller
can be designed to disable actions that lead to
the leaking of the secret.

Although this theory is quite rich, it suffers
from the drawback that the states in a DES are
discrete. In many practical systems, it is com-
mon for the states to take values in a continuous
domain. This is indeed the case in CPS such as
power systems and water networks. This paper
considers CPS modeled as a discrete time linear
time invariant (DT-LTI) system [10] (thus, while
time steps are discrete, the state, control, and
output variables are real valued). We use tools
from control theory to study opacity for such
systems.

We define a notion of opacity for DT-LTI sys-
tems and establish conditions to achieve opacity
in terms of sets of reachable states. Opacity of a
given DT-LTI system is shown to be equivalent
to the output controllability of a system obeying
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the same dynamics, but with different initial
conditions. Finally, we present an algorithm to
determine an opaque set of states, given candi-
date sets of secret and nonsecret states.

A. Related Work
Opacity was first presented as a tool to study

cryptographic protocols in [11]. The intruder
was a passive observer who could read messages
exchanged between two parties, but could not
modify, block, or send a message. The aim of
the parties was to exchange secret information
without making it obvious to the intruder. A
theory of supervisory control for DES repre-
sented by finite state automata (FSA) and regu-
lar languages was formulated in [12], [13]. This
framework spawned research in many areas
including fault diagnosis [14], hybrid systems
[15], and robotics [16].

DES were used to study opacity in [6], which
assumed multiple intruders with different ob-
servation maps. Assuming the supervisor could
control all events, it was shown that there exists
an optimal control that enforced opacity. The se-
cret can be specified by a subset of states or sub-
languages of the DES. Opacity can be defined
for each instance accordingly. Verification of the
opacity of a secret specified as a language was
presented in [8], [17], while [7], [18], [19] studied
the same for secrets specified as states. Opacity
was compared with detectability and diagnos-
ability of DES and other privacy properties like
secrecy and anonymity in [20]. The enforcement
of opacity using supervisory control was studied
in [8], [9]. [21] formulated an alternate method
of opacity enforcement using insertion functions,
which are entities that modify the output be-
havior of the system in order to maintain the
secret. The authors also proposed a notion of
joint opacity, where a system can be observed
by observers who share their observations with
a coordinator, which then verifies opacity.

B. Outline of Paper
Section (II) gives a brief introduction to opac-

ity for discrete event systems. We formulate
and motivate our definition of opacity for LTI

systems in Section (III). Section (IV) gives ex-
amples illustrating our framework. In Section
(V), we establish necessary and sufficient condi-
tions to establish k−ISO in terms of reachable
sets, while Section (VII) shows that k−ISO is
equivalent to output controllability of a slightly
modified LTI system. Section (VI) verifies k−ISO
under unions and intersections of sets. We pro-
pose an algorithm to compute an opaque set,
given candidate secret and nonsecret sets of
states in Section (VIII). We conclude the paper
with ideas on future areas of research in this
topic in Section (IX).

II. OPACITY FOR DISCRETE EVENT SYSTEMS

In this section, we review opacity for discrete
event systems. The reader is referred to [7], [20],
[22] for a detailed exposition.

Let G = (X ,Σ, f , X0) be an FSA, where X is a
nonempty set of states, X0 ⊆ X is a nonempty
set of initial states, and Σ is the set of events.
f : X ×Σ → X is the (partial) state transition
function: given x, y ∈ X and σ ∈ Σ, we write
f (x,σ)! if f (x,σ) = y is a valid transition. The
transition function is extended to f : X×Σ∗ → X
in the usual way. The language generated by
G is L (G) := {s ∈ Σ∗ : f (x, s)!}, and describes all
possible trajectories of the system. Let K1 and
K2 be sublanguages of L (G). Let P :Σ∗ →Σ∗ be
a projection map. Then, if s ∈ Σ∗ occurs in the
system, an external agent would see P(s).

Definition 2.1: K1 is strongly language based
opaque (LBO) with respect to K2 and P if for
every trajectory in K1, there exists a trajectory
in K2 that ‘looks’ the same under P, i.e. K1 ⊆
P−1(P(K2)).

Definition 2.2: K1 is weakly LBO with respect
to K2 and P if there exists a trajectory in K1
that is confused with some trajectory in K2,
under P, i.e. K1 ∩P−1(P(K2)) 6=φ.

Definition 2.3: Given G with Xs, Xns ⊆ X0,
and P, Xs is initial state opaque (ISO) with
respect to Xns and P if for every i ∈ Xs and
every t ∈ L(G, i) such that f (i, t)!, there exists
j ∈ Xns and t′ ∈ L(G, j) such that f ( j, t′)!, and
P(t)= P(t′).
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These definitions are essentially equivalent, as
there exist polynomial time algorithms that re-
late any pair of the notions of opacity [22].

III. OPACITY FOR LTI SYSTEMS

Consider the DT-LTI system:

x(t+1)= Ax(t)+Bu(t)
x(0)= x0 ∈ X0

y(t)= Cx(t) (1)

where x ∈Rn,u ∈Rm, y ∈Rp, and A,B,C are real
matrices of appropriate dimensions. The sub-
scripts s and ns, when appended to the variables
will respectively correspond to trajectories start-
ing from secret and nonsecret initial states. Let
K be a set of positive integers corresponding to
the time instants the adversary will observe the
system.

Definition 3.1: For (1), given Xs, Xns ⊆ X0 and
K , Xs is strongly k−ISO with respect to Xns if
for all k ∈ K , for all xs(0) ∈ Xs and for every
sequence of admissible controls us(0), . . . ,us(k),
there exist an xns(0) ∈ Xns, and a sequence of
admissible controls uns(0), . . . ,uns(k) such that
ys(k)= yns(k).
This means that, starting from any secret state,
and applying any sequence of k admissible
controls corresponding to the instants the ad-
versary makes an observation, the system will
reach a state that is indistinguishable from a
state reached by the application of some admis-
sible control sequence of length k, starting from
some nonsecret state. A weaker notion of k−ISO
can be similarly defined.

Definition 3.2: Xs is weakly k−ISO w.r.t. Xns
if for all k ∈K , there exist xs(0) ∈ Xs, a sequence
of admissible controls us(0), . . . ,us(k), xns(0) ∈
Xns, and a sequence of admissible controls
uns(0), . . . ,uns(k) such that ys(k)= yns(k).

Motivation for Definition

This notion of opacity for LTI systems is dif-
ferent from familiar definitions of observability.
The observability problem aims to determine
the initial state x(0), given the entire output

and control history. Here, however, the adver-
sary has access to only snapshots of the system
output, and it must determine x(0) from these.
The small number of observations of the sys-
tem is motivated by the fact that an adversary
might not want to reveal its presence to the
system (the ‘passive’ nature of the intruder only
prevents it from performing actions detrimental
to the system; the system can take corrective
action to ensure opacity if it detects the ad-
versary). In this paper, we shall assume that
the adversary makes exactly one observation,
and at time k, i.e. K = {k}. The case when
the adversary makes observations at different
times, and limiting the number of observations
it will be allowed to make is a subject for future
work.

Our formulation differs from definitions of
opacity in the DES literature where the observa-
tion of the entire secret trajectory must coincide
with the observation of a non-secret trajectory.
Here, we only need that the secret and non-
secret outputs at time k coincide. This is again
motivated by the fact that the adversary might
not want to reveal itself to the system by making
multiple observations. k−ISO also differs from
k−step opacity proposed in [23]. In their for-
mulation, k−step opacity is achieved when the
adversary does not know if the system entered a
secret state in the k previous steps. We require
that the ambiguity exists only at time k. We
demonstrate that an additional requirement to
our conditions for k−ISO will also guarantee
k−step opacity.

The adversary is assumed to have knowledge
of the initial sets of secret and nonsecret states.
Recall that the aim here is that, following an
observation at time k, the adversary should not
be able to infer whether the system started from
a secret state or a nonsecret state at time 0.
From the system’s point of view, it needs to
know how much information it can reveal about
itself without allowing the adversary to meet
its goal. From the adversary’s perspective, it
needs to know whether it has deduced the secret
at time k, which would entail some knowledge
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of the set of ‘solutions’ to the problem. This
assumption strikes a balance between these
two requirements. Variants of this problem with
other assumptions on the information available
to the adversary will be studied in the future.

Controls form an integral part of the def-
inition of k−ISO, which automatically allows
for simultaneously verifying and determining
policies to enforce opacity. This differs from
the DES framework, where opacity enforcing
supervisory control is treated separately from
the verification of opacity.

Our definition of k−ISO for LTI systems is
also different from the notion of simulation rela-
tions between dynamical systems [24]. In simu-
lation relations, we typically verify the ‘equality’
of two systems governed by different dynamics.
In our framework however, we try to identify
equivalence classes of outputs at time k, and
opacity is deemed to have been achieved if the
system starting from two disjoint sets of states
at time 0 reaches the same ‘equivalence class’
of outputs at time k.

IV. EXAMPLES

Example 4.1: Let Xs, Xns ⊆ X0 with Xs =
{
(

1 0 0
)T ,

(
0 0 1

)T } and Xns = R3 \ Xs. Let A =
I3×3, B = (

1 1 1
)T and C = (

1 1 1
)
. The output for

the dynamics in (1) for xs(0)= (
1 0 0

)T is:

ys(i)= 1+3
i−1∑
j=0

us( j) (2)

xs(0) = (
0 0 1

)T will also give the same ys(i).
Now, let xns(0)= (

0 1 0
)T . From (1), we have

yns(i)= 1+3
i−1∑
j=0

uns( j) (3)

Comparing (2) and (3), Xs will be strongly
k−ISO w.r.t. Xns if for every admissible control
sequence {us(0), . . . ,us(k−1)}, there is an admis-
sible control sequence {uns(0), . . . ,uns(k−1)} such
that:

∑k−1
j=0 us( j)=∑k−1

j=0 uns( j).
Example 4.2: Secure movement of money

from a bank to an ATM is an interesting ex-
ample. One way of ensuring security, from the

bank’s perspective, is to use heavily armored
trucks. However, such customizations can be
very expensive, and need to be continuously
updated to stay ahead of potential attackers.
Another method is to employ a set of identical
dummy trucks. Assuming that the cost of carry-
ing out an attack is reasonably high, attacking
a truck carrying money is akin to playing the
lottery. The goal (of the bank) is to ensure
that an adversary cannot determine whether an
observed truck is carrying money.

Let the set of secret states be the locations
from which trucks carrying money originate.
The non-secret states can be the whole space,
excluding this set, or a predefined set of states.

Let the states of the system be the position
and velocity of a truck and the control input be
the acceleration. Assuming unit mass and unit
sampling interval, a simplified DT-LTI model of
the system is:(

p(k+1)
v(k+1)

)
=

(
1 1
0 1

)(
p(k)
v(k)

)
+

(
0.5
1

)
a(k)

y(k)= (
1 0

)(p(k)
v(k)

)
(4)

The position at time k is given by:

p(k)= p(0)+kv(0)+
k−1∑
j=0

(k− j−0.5)a( j) (5)

Let this be the observation of the adversary
at time k. The acceleration of a truck is typ-
ically upper bounded, i.e. a(k) ≤ amax. Now,
given Xs(0), Xns(0),amax, and p(k), the truck’s
initial position will be opaque to the adversary
if for every control sequence starting from ev-
ery (ps(0),vs(0)) ∈ Xs(0), there exists a control
sequence starting from some (pns(0),vns(0)) ∈
Xns(0) such that the positions of the trucks at
time k are the same.

V. OPACITY USING REACHABLE SETS

Let Uk
s := {us0, . . . ,us(k−1)} and Uk

ns :=
{uns0, . . . ,uns(k−1)}. Let Xs(k) and Xns(k) denote
the sets of reachable states in k steps, starting
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from nonempty sets Xs and Xns respectively.

Xs(k)= ⋃
x0∈Xs

⋃
Uk

s

{x : x(i+1)= Ax(i)+Bu(i),∀i < k}

Xns(k)= ⋃
x0∈Xns

⋃
Uk

ns

{x : x(i+1)= Ax(i)+Bu(i),∀i < k}

Theorem 5.1: Xs is strongly k−ISO with re-
spect to Xns if and only if CXs(k)⊆ CXns(k).

Proof: First, let strong k−ISO hold. Then,
for all xs(0) ∈ Xs and all {us(·)}, there exist
xns(0) ∈ Xns and {uns(·)} such that ys(k)= yns(k).
Now, starting from Xs (respectively, Xns) and
applying k admissible controls, one reaches a
state in Xs(k) (Xns(k)). Therefore, k−ISO en-
sures that for every xs(k) ∈ Xs(K), there exists
xns(k) ∈ Xns(k) such that ys(k) = yns(k). This
gives CXs(k)⊆ CXns(k).

Now, let CXs(k) ⊆ CXns(k). Then, for every
xs(k) ∈ Xs(k), there exists xns(k) ∈ Xns(k) such
that ys(k) = yns(k). Since Xs(k) and Xns(k) are
reachable sets starting from Xs and Xns respec-
tively, this is equivalent to: for every xs(0) ∈
Xs and every {u(·)}, there exists xns(0) ∈ Xns
and {uns(·)} such that ys(k) = yns(k). This, by
definition, is strong k−ISO.

Remark 5.2: This result can be extended to
verify k−step opacity proposed in [23] by pos-
tulating that CXs(i) ⊆ CXns(i) holds for i =
m,m−1, . . . ,m−k+1 for K = {m}.

Proposition 5.3: If Xs(k) ⊆ Xns(k), then Xs is
strongly k−ISO with respect to Xns.
Unlike Theorem (5.1), Proposition (5.3) only
gives a sufficient condition for k−ISO. To
see that this condition is not necessary, let
C = (

1 1 1
)
, and Xs(k) = (

1 0 0
)T and Xns(k) =(

0 1 0
)T . Then, CXs(k) = CXns(k), establishing

k−ISO, even though Xs(k) 6⊆ Xns(k).
Similar results hold for weak k−ISO.
Theorem 5.4: Xs is weakly k−ISO with re-

spect to Xns if and only if CXs(k)∩CXns(k) 6=φ.
Proposition 5.5: If Xs(k)∩Xns(k) 6=φ, then Xs

is weakly k−ISO with respect to Xns.

VI. k−ISO UNDER SET OPERATIONS

Properties of k−ISO are studied under unions
and intersections. The properties verified will be

for strong k−ISO, unless otherwise mentioned.
Proofs of some results are omitted for brevity.
Let X denote the set of initial states, and X (k)
be the set of states reachable in k steps, starting
from X .

Proposition 6.1: Given sets of initial states
X1, X2, · · · ⊆ X , the reachable set in k steps of
their union is equal to the union of the reachable
sets in k steps of each set of initial states. That
is, (

⋃
i X i)(k)=⋃

i X i(k).
Proof: x ∈ (

⋃
i X i)(k)

⇔∃x0 ∈ (
⋃
i

X i),∃{u(·)}, (1) holds ∀i < k, x(k)= x

⇔[(∃x0 ∈ X1 ∧∃{u(·)}) s.t. (x ∈ X1(k))]∨
[(∃x0 ∈ X2 ∧∃{u(·)}) s.t. (x ∈ X2(k))]∨ . . .

⇔x ∈⋃
i

X i(k)

Corollary 6.2: Given X1, X2, · · · ⊆ X and C :
Rn →Rm, C(

⋃
i X i)(k)=⋃

i CX i(k).
Proposition 6.3: If Xsi is k−ISO with respect

to Xns for each i, then
⋃

i Xsi is k−ISO with
respect to Xns.

Proof: Xsi k−ISO w.r.t. Xns∀i

⇔CXsi (k)⊆ CXns(k)∀i
⇔⋃

i
CXsi (k)⊆ CXns(k)

⇔C(
⋃
i

Xsi (k))⊆ CXns(k)

⇔⋃
i

Xsi is k− ISO w.r.t. Xns

Proposition 6.4: If Xs is k−ISO w.r.t. Xnsi for
each i, then Xs is k−ISO w.r.t.

⋃
i Xnsi

Proposition 6.5: Given sets of initial states
X1, X2, · · · ⊆ X , (

⋂
i X i)(k)⊆⋂

i X i(k).
Proof: x ∈ (

⋂
i X i)(k)

⇒∃x0 ∈ (
⋂
i

X i),∃{u(·)}, (1) holds ∀i < k, x(k)= x

⇒[(∃x0 ∈ X1 ∧∃{u(·)}) s.t. (x ∈ X1(k))]∧
[(∃x0 ∈ X2 ∧∃{u(·)}) s.t. (x ∈ X2(k))]∧ . . .

⇔x ∈⋂
i

X i(k)

6341



Corollary 6.6: Given X1, X2, · · · ⊆ X and C :
Rn →Rm, C(

⋂
i X i)(k)⊆⋂

i CX i(k).
Remark 6.7: The reverse inclusions need not

hold in (6.5) and (6.6). Let C = I, X1 = Xs and
X2 = Xns. X1 ∩ X2 = ;, but X1(k)∩ X2(k) need
not be empty. 1

Proposition 6.8: If Xsi is k−ISO with respect
to Xns for each i, then

⋂
i Xsi is k−ISO with

respect to Xns.
Proposition 6.9: If Xs is k−ISO with respect

to Xnsi for each i, then CXs(k) ⊆ ⋂
i CXnsi (k).

However, in general, Xs is not k−ISO with
respect to

⋂
i Xnsi .

Proof: Xs k−ISO w.r.t. Xnsi∀i

⇔CXs(k)⊆ CXnsi (k)∀i
⇒CXs(k)⊆⋂

i
CXnsi (k)

However, we can have
⋂

i Xnsi =;, which means
C(

⋂
i Xnsi )(k) is undefined.

Proposition 6.10: If Xsi is weakly k−ISO with
respect to Xns for each i, then

⋃
i Xsi is weakly

k−ISO with respect to Xns.
Remark 6.11: If Xsi is weakly k−ISO with

respect to Xns for each i, then
⋂

i Xsi need not
be weakly k−ISO with respect to Xns. That is,
given CXsi (k)

⋂
CXnsi (k) 6= ;∀i, if

⋂
i Xsi = ;,

then C(
⋂

i Xsi )(k)
⋂

CXns(k) will not be defined.

VII. k−ISO AND OUTPUT CONTROLLABILITY

The output of (1) at time k is given by:
y(k)= CAkx(0)+∑k−1

j=0 CAk− j−1Bu( j).
Definition 7.1: A state x of (1) is output con-

trollable on [0,k f ] if there exists a control se-
quence {u(·)} that transfers the system from
x(0)= x to y(k f )= 0.

Theorem 7.2: Let Xs be (strongly or weakly)
k−ISO with respect to Xns. Then there exists a
state of (1) that is output controllable on [0,k].
Further, if k−ISO is established for the pair
(xs(0), xns(0)) ∈ Xs×Xns (and appropriate control
sequences {us(·)} and {uns(·)}), then the control
sequence u(i) = us(i)− uns(i), i = 0,1, . . . ,k − 1,

1Recall that the definition of the reachable set in k steps
assumes a nonempty initial set of states.

will achieve output controllability for the initial
state x(0)= xs(0)− xns(0).

Proof: k−ISO implies ys(k) = yns(k) for
appropriate xs(0), {us(·)}, xns(0) and {uns(·)}. Set-
ting x(0)= xs(0)− xns(0) and u(i)= us(i)−uns(i),
i = 0,1, . . . ,k−1 in the dynamics of (1) ensures
y(k)= 0, thus achieving output controllability of
the state x(0)= xs(0)− xns(0).

Theorem 7.3: Let (1) be output controllable
in k steps for a set of states Xoc(0) \ {0} and
controls {U(·)}. Let X1 and X2 be sets such that
every x1 ∈ X1 can be written as x+ x2, where
x ∈ Xoc(0)\{0} and x2 ∈ X2. Then, X1 is strongly
k−ISO with respect to X2.

Proof: Output controllability ensures that:

y(k)= CAkx(0)+
k−1∑
j=0

CAk− j−1BU( j)= 0 (6)

For any control sequence {u1(·)}, the output at
time k, starting from any x1(0) ∈ X1 is: y1(k) =
CAkx1(0)+∑k−1

j=0 CAk− j−1Bu1( j). The output at
time k starting from x2(0) ∈ X2 with the con-
trol sequence {u1(·)−U(·)} is: y2(k)= CAkx2(0)+∑k−1

j=0 CAk− j−1B[u1( j)−U( j)]. Using the assump-
tion that every x1 ∈ X1 can be written as x+ x2,
where x ∈ Xoc(0)\{0}, x2 ∈ X2, and equation (6),
we get y1(k)= y2(k).

Thus, for any x1 ∈ X1 and any control se-
quence starting from x1, there exist x2 ∈ X2 and
another control sequence such that the outputs
after k steps are the same. This is strong k−ISO
with Xs = X1 and Xns = X2.

VIII. COMPUTING AN OPAQUE SUBSET

Algorithm (1) returns a subset of the set of
initial states that is k−ISO with respect to its
complement. (The output is actually a union of
opaque subsets. However, k−ISO is preserved
under unions). Algorithm (2) extends it to the
case with candidate sets of initial secret and
nonsecret states.

Lemma 8.1: Algorithm (1) is correct.
Proof: Xs = ⋃

i X i, C(
⋃

i X i)(k) = ⋃
i CX i(k)

(from (6.2)). CXs(k) ⊆ CXns(k), which is neces-
sary and sufficient for k−ISO (from (5.1)).
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Algorithm 1 Determine a k−ISO subset of a
given set of initial states
Input: Set of initial states X , positive integer

k, system model (1)
Output: Xs ⊆ X , that is k−ISO w.r.t. X \ Xs

1: X (k) := ⋃
x0∈X

⋃
Uk {x : x(i + 1) = Ax(i) +

Bu(i),∀i < k} // reachable set in k steps
2: CX (k) := {y : y= Cx(k), x(k) ∈ X (k)}
3: Xs = {

⋃r
i=1 X i : X i ⊆ X∀i ∈ {1, . . . , r},⋃r

i=1 CX i(k)⊆ C(X \
⋃r

i=1 X i)(k)};
Xns = X \ Xs

Algorithm 2 Determine a k−ISO subset, given
candidate secret and nonsecret sets
Input: (Disjoint) Sets of prospective secret and

nonsecret states X p
s (0), X p

ns(0), positive inte-
ger k, system model (1)

Output: X∗
s ⊆ X p

s (0) that is k−ISO w.r.t. X∗
ns

1: X p
s (k) = ⋃

x0∈X p
s (0)

⋃
Uk {x : x(i + 1) = Ax(i) +

Bu(i),∀i < k};
X p

ns(k) = ⋃
x0∈X p

ns(0)
⋃

Uk {x : x(i + 1) = Ax(i)+
Bu(i),∀i < k}

2: CX p
s (k) := {y : y= Cx(k), x(k) ∈ X p

s (k)};
CX p

ns(k) := {y : y= Cx(k), x(k) ∈ X p
ns(k)}

3: if (CX p
s (k)⊆ CX p

ns(k)) then
4: X∗

s = X p
s (0);

X∗
ns = X p

ns(0)
5: else if (CX p

s (k)∩CX p
ns(k)=;) then

6: Run Algo. (1) with X = X p
s (0)

7: X∗
s = Xs;

X∗
ns = (X p

s (0)\ X∗
s )

⋃
X p

ns(0)
8: else
9: X∗∗

s (0) := {x ∈ X p
s (0) :CX∗∗

s (k) ⊆ (CX p
s (k)∩

CX p
ns(k))}

10: Run Algo. (1) with X = X p
s (0)\ X∗∗

s (0)
11: X∗

s = Xs
⋃

X∗∗
s (0);

X∗
ns = (X p

s (0)\ X∗
s )

⋃
X p

ns(0)
12: end if

Remark 8.2: We note that k−ISO can be
achieved by a combination of considering a
smaller set of secret states and a larger set of
nonsecret states. The else-if and else statements
in Algorithm (2) determine a ‘compatible’ pair
such that X∗

s is k−ISO w.r.t. X∗
ns.

Proposition 8.3: Algorithm (2) is correct.
Proof: Three cases are considered.

I. CX p
s (k)⊆ CX p

ns(k): k−ISO, from Thm. (5.1).
I I. CX p

s (k)∩CX p
ns(k)=;: The proof, in this case,

is identical to Lemma (8.1).
I I I. CX p

s (k)∩CX p
ns(k) 6= ;: for every x1 ∈ X∗∗

s (0),
there exists x2 ∈ X p

ns(0) such that CX∗∗
s (k) ⊆

(CX p
s (k)∩CX p

ns(k))⊆ CX p
ns(k). Therefore, X∗∗

s (0)
is k−ISO with respect to X p

ns(0). From the proof
of Lemma (8.1), Xs is k−ISO with respect to
X \ Xs = X p

s (0) \ (Xs ∪ X∗∗
s (0)), which completes

the proof.

IX. CONCLUSION AND FUTURE WORK

We presented a framework for opacity in
DT-LTI systems and established conditions to
achieve k−ISO in terms of reachable sets. It
was shown that unions of opaque sets preserve
opacity, while this was not necessarily true for
intersections. We then determined conditions
under which k−ISO was equivalent to output
controllability. Finally, we presented an algo-
rithm to compute an opaque subset, given can-
didate sets of secret and nonsecret states, and
proved its correctness.

The adversary not wanting to reveal itself was
the motivation for allowing only snapshots of
the output in our definition of k−ISO. Future
work will involve examining the case when
the adversary wishes to verify opacity while
minimizing its number of observations and not
revealing itself. We also propose to formalize
a notion of k−ISO for distributed systems and
CPS modeled as continuous time LTI systems
and nonlinear systems. Tools from information
theory [25] and differential privacy [26] can be
used to develop a framework to quantify opacity
in cyberphysical systems.
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