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Diabetes

WHO Global report on diabetes, 2016 



Type 1 Diabetes therapy

Image from: https://www.medtronic-
diabetes.com.au/pump-therapy/what-is-insulin-pump-
therapy

Insulin pump delivers two kinds of insulin:

- Bolus: high, on-demand dose to cover 
meals

- Basal: to cover demand outside meals

Continuous Glucose Monitor (CGM) 
detects sugars levels under the skin, a 
measure of blood glucose (BG)



T1D therapy - limitations

Image from: https://www.medtronic-
diabetes.com.au/pump-therapy/what-is-insulin-pump-
therapy

- Bolus is manually set by the patient → 
danger of wrong dosing

- Pump and CGM don’t communicate with 
each other 



Closed-loop control, AKA Artificial Pancreas (AP)

Image from: https://www.medtronic-
diabetes.com.au/pump-therapy/what-is-insulin-pump-
therapy

Sugar levels

Challenges:

- CGM is a “derived” measure of BG

- Disturbances (Meal and Exercise)



Closed-loop control, AKA Artificial Pancreas (AP)

Image from: https://www.medtronic-
diabetes.com.au/pump-therapy/what-is-insulin-pump-
therapy

Sugar levels - Disturbances (Meal and Exercise)

- Only controls basal insulin

- Meals are still announced



Our contribution

A data-driven robust model predictive control (MPC) design for the AP:

- Closed-loop control of both basal and bolus insulin

- Handles uncertainty by learning from data

- Accurate state estimation from CGM measurements



System Overview



Simulation Model

Hovorka et al., Physiol. Meas. 25 (2004) 905–920 
Wilinska et al., Journal of Diabetes Science and Technology 4 (1), 2010
Resalat et al., EMBC 2016 



Simulation Model
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Uncertainty Sets

Learn from data the possible realization of uncertainty parameters 

Model with spatial (among meal and exercise) and temporal (among times) 
correlation

mean covariance
Bertsimas et al., arXiv:1401.0212 (2013)



Robust Model Predictive Control

MPC:

t t+1     t+2     t+3       ... t+Np

Picture from:https://en.wikipedia.org/wiki/Model_predictive_control



Robust Model Predictive Control

Robust 
MPC:

Uncertain variables →  
uncertain predictions

t t+1     t+2     t+3       ... t+Np

Picture from:https://en.wikipedia.org/wiki/Model_predictive_control



Robust Model Predictive Control

Find the insulin therapy at time t, t+1,... that minimizes the worst case 
performance w.r.t. uncertainty parameters

Performance: combination of distance from target trajectory and step-wise 
discrepancy of control strategy   



State Estimation

We designed a Moving Horizon Estimator (MHE):

- “Estimation a la MPC”: uses a model to minimize distance between predicted 
and actual measurements, and between predicted and estimated states over 
a moving window of length N

- It works also as a meal estimator: estimates the most-likely uncertainty 
parameter values

Rao et al., IEEE Trans. Automatic Control 48 (2), 246-258, 2003



MHE outperforms Extended Kalman filter

Low sensor noise High sensor noise

State Estimation



Evaluation

Robust controller compared with

- Perfect controller: with exact knowledge of uncertainty parameters and full 
state observability (no state estimation errors)

- Only basal controller: simulates the behavior of hybrid closed-loop insulin 
pumps with only automatic control of basal insulin (bolus is manual)



T hypo T normal T hyper

Perfect 0% 99.69% 0.31%

Only basal 1.6% 69.4% 29%

Robust 0.51% 97.7% 1.79%

Scenario 1 - Meals as expected 
- Start: 60 ± 30 min; total carbs: 60 ± 18 g

- Situation where uncertainty set is accurate



T hypo T normal T hyper

Perfect 0% 100% 0%

Only basal 0% 67.25% 32.75%

Robust 0.79% 99.03% 0.18%

Scenario 2 - Unexpected delays
- Same as before, but start time is constantly delayed of 1 h

- Situation where uncertainty sets are not accurate



T hypo T normal T hyper

Perfect 0% 100% 0%

Only basal 0% 100% 0%

Robust 0% 100% 0%

Exercise
- We reproduce a 1h exercise (30 min intense, followed by 30 min moderate)



Summary
- Robust MPC design for AP that well supports meal disturbances

- Based on deriving uncertainty sets from patient data

- Towards fully closed-loop diabetes therapy

Ongoing and future work
- Longer scenarios (1, 2, 7, … days) 

- Data from CDC’s NHANES database

- More tractable formulation (linearization, convex programming, simpler model)

- More advanced patient behavioral model


