Closed-Loop Robust Control for an Artificial Pancreas under Meal and Exercise Uncertainty

Nicola Paoletti

Department of Computer Science, Stony Brook University

Joint work with: Shan Lin, Scott Smolka, Kin Sum Liu

CyberCardia meeting at UPenn, 14 Apr 2017

Diabetes

Main types of diabetes

TYPE 1 DIABETES

Body does not produce enough insulin

TYPE 2 DIABETES

Body produces insulin but can't use it well

GESTATIONAL DIABETES

A temporary condition in pregnancy

Consequences

Diabetes can lead to complications in many parts of the body and increase the risk of dying prematurely.

WHO Global report on diabetes, 2016

Type 1 Diabetes therapy

Image from: https://www.medtronic-diabetes.com.au/pump-therapy/what-is-insulin-pump-therapy

Insulin pump delivers two kinds of insulin:

- Bolus: high, on-demand dose to cover meals
- **Basal:** to cover demand outside meals

Continuous Glucose Monitor (CGM) detects sugars levels under the skin, a measure of blood glucose (BG)

T1D therapy - limitations

Image from: https://www.medtronic-diabetes.com.au/pump-therapy/what-is-insulin-pump-therapy

- Bolus is manually set by the patient → danger of wrong dosing
- Pump and CGM don't communicate with each other

Closed-loop control, AKA Artificial Pancreas (AP)

Image from: https://www.medtronic-diabetes.com.au/pump-therapy/what-is-insulin-pump-therapy

Challenges:

- CGM is a "derived" measure of BG
- Disturbances (Meal and Exercise)

Closed-loop control, AKA Artificial Pancreas (AP)

Image from: https://www.medtronic-diabetes.com.au/pump-therapy/what-is-insulin-pump-therapy

- Disturbances (Meal and Exercise)

THE WORLD'S FIRST
HYBRID CLOSED LOOP SYSTEM.
MINIMED® 670G SYSTEM.

- Only controls basal insulin
- Meals are still announced

Our contribution

A data-driven robust model predictive control (MPC) design for the AP:

- Closed-loop control of both basal and bolus insulin
- Handles uncertainty by learning from data
- Accurate state estimation from CGM measurements

System Overview

Simulation Model

Plant (virtual T1D patient)

Hovorka et al., Physiol. Meas. 25 (2004) 905–920 Wilinska et al., Journal of Diabetes Science and Technology 4 (1), 2010 Resalat et al., EMBC 2016

Simulation Model

Plant (virtual T1D patient)

Uncertainty Sets

Data-driven learning

Learn from data the possible realization of uncertainty parameters

$$\mathcal{U} = egin{pmatrix} \mathbf{u}^t \ \mathbf{u}^{t+1} \ dots \ \mathbf{u}^{t+N_p-1} \end{pmatrix}$$

Model with spatial (among meal and exercise) and temporal (among times) correlation

$$\mathcal{U} = \{ \hat{oldsymbol{\mu}} + \mathbf{C}^T \mathbf{w} \}$$

Bertsimas et al., arXiv:1401.0212 (2013)

Robust Model Predictive Control

Robust MPC

Picture from:https://en.wikipedia.org/wiki/Model_predictive_control

Robust Model Predictive Control

Robust MPC

Robust MPC:

Picture from:https://en.wikipedia.org/wiki/Model_predictive_control

Robust Model Predictive Control

Robust MPC

Find the insulin therapy at time t, t+1,... that minimizes the worst case performance w.r.t. uncertainty parameters

$$\min_{\iota^t, \dots, \iota^{t+N_c-1}} \max_{\mathbf{u}^t, \dots, \mathbf{u}^{t+N_p-1}} \sum_{k=1}^{N_p} d(t+k) + \beta \cdot \sum_{k=0}^{N_c-1} (\Delta \iota^{t+k})^2$$

Performance: combination of distance from target trajectory and step-wise discrepancy of control strategy

State Estimation

State estimator

We designed a **Moving Horizon Estimator (MHE)**:

- "Estimation a la MPC": uses a model to minimize distance between predicted and actual measurements, and between predicted and estimated states over a moving window of length N
- It works also as a **meal estimator**: estimates the most-likely uncertainty parameter values

$$\min_{\mathbf{x}^{t-N}, \dots, \mathbf{x}^{t} | \mathbf{u}^{t-N}, \dots, \mathbf{u}^{t}} \left[\mu \cdot || \mathbf{x}^{t-N} - \hat{\mathbf{x}}^{t-N} ||^{2} + \sum_{k=t-N+1}^{t} \frac{||v^{k}||^{2}}{q^{k}} \right]$$

State Estimation

State estimator

MHE outperforms Extended Kalman filter

Evaluation

Robust controller compared with

- **Perfect controller:** with exact knowledge of uncertainty parameters and full state observability (no state estimation errors)
- **Only basal controller:** simulates the behavior of hybrid closed-loop insulin pumps with only automatic control of basal insulin (bolus is manual)

Scenario 1 - Meals as expected

- Start: 60 ± 30 min; total carbs: 60 ± 18 g
- Situation where uncertainty set is accurate

	T hypo	T normal	T hyper
Perfect	0%	99.69%	0.31%
Only basal	1.6%	69.4%	29%
Robust	0.51%	97.7%	1.79%

Scenario 2 - Unexpected delays

- Same as before, but start time is constantly delayed of 1 h
- Situation where uncertainty sets are not accurate

	T hypo	T normal	T hyper
Perfect	0%	100%	0%
Only basal	0%	67.25%	32.75%
Robust	0.79%	99.03%	0.18%

Exercise

- We reproduce a 1h exercise (30 min intense, followed by 30 min moderate)

	T hypo	T normal	T hyper
Perfect	0%	100%	0%
Only basal	0%	100%	0%
Robust	0%	100%	0%

Summary

- Robust MPC design for AP that well supports meal disturbances
- Based on deriving uncertainty sets from patient data
- Towards fully closed-loop diabetes therapy

Ongoing and future work

- Longer scenarios (1, 2, 7, ... days)
- Data from CDC's NHANES database
- More tractable formulation (linearization, convex programming, simpler model)
- More advanced patient behavioral model