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= \We need to model 2D and 3D hearts

» Reproduce recordings used by machines
(Electrode and ECGS)



What I1s the ECG

Atria

Ventricles

Q)

CyberCardia

s

N .
et

Using optical mapping.
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Things to Note:

Direction of activation gives QRS (given by Purkinje activations)

Purkinje Fibrs Regions of cells with
| different durations




Multi dimensional system Q)
(from 0 to 3D)
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Open heart and Purkinje network




Multi dimensional system Q)
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Open heart and Purkinje network
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1D cable with Epi- M- and Endo- cardial cells
(activation left to right)
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ECG from simulations and EXxp.

Vi (v, t) = u; (r,t) —u. (v, 1), (N

where u; and wu. are the intra- and extracellular myocardial
potentials at point r and time £, respectively. Let the current
densities be of the form j, = —g,Vu, for the intra-,
extracellular, and extracardiac regions, respectively. There
are no current sources or sinks within the body, so the
continuity equation requires

{D =V. (j'a +Je) |r‘E£!u

(2)
0=V-jol

rEQp”

And the flux continuity across the boundary between the
heart and extracardiac medium requires

Ue = Uj
. (3)
Jorn=(ji+je) 0

along the boundary 9€2y. Within the heart, transmembrane

potential differences V;,, (r,t) provide an equivalent cardiac
source when related as

i(r)=—-g:VVy, “4)

where g; is the intracellular membrane conductance. We may
then express the total current density as a sum including both
the transmembrane potential V,,, and the total electrostatic
potential ¢ (r,t)

i=—-00Vy—gVV,. (5)

Since the divergence of the total current density is zero
according to equation 4,

0=-V (00Vy) =V (:VVa). (6)

It is possible to write a Poisson equation for the electrostatic
potential in terms of the transmembrane potential

Vg (r) = —%VQV;W 7)
[1]

L) =— / &' V' [G V'V,] -G V'2V,,}
do

o ©)
= / d*r'G V'V, — ){ dS-G V'V,
Q}; BQH

Since the ECG probe is located external to the heart, r &
Qp. By the Neumann boundary conditions imposed upon
the Green’s function, the surface term is zero if we take
the approximation that the conducting medium has equal
anisotropy ratios, or g. o ¢;. For an infinite and homoge-
neous extracardiac medium 2, we have the Green'’s function

G(r;r')=

! T (10)

At|r —r

Substitution of this Green’s function, assuming equal
anisotropy ratios, and utilizing the divergence theorem, we
arrive at the integral formulation for the electrostatic potential
at point r in terms of the transmembrane potential

gi / iy V2V, (r') .

|r —r'|

(11)

Since the dimensional scales associated with the transmem-
brane potential difference and ECG amplitude are known,
the important characteristic involved in OM-ECG calculation
is the relationship between its amplitude and time. Assum-
ing the transmembrane potential has the form Vi, (r) =
Vi (z,7), with constant V,,, along the z-direction, we have
the proportionality

1277 -
o (r) .x/d?-r’w_ (12)

v —r|
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» Reconstructed ECG (from experiment, or numerical)
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» Reconstructed ECG (from experiment, or numerical)
gi [ 3.0V Vi (r')
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Real time Simulations of this:
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Membrane potential (mV)
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Stiff ODEs

Euler Method

QR
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‘_..-' Merve Cell

Cardiac Myocyte
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Time for the upstroke ~5 mse<onds !!
the

l.e. 1 second requires 10,000 iterations!
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Simulations
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1 second requires 10,000 l l l 3

TenTusher model.

Iterations! “F ag0n ]
o 300 __ ODEs /
Each cell (4 to 24) ODEs | |
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Number of cells in tissue? ol
Millions!
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