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Problem statement

Given a continuous dynamical system (set of ODEs)
Compute continuous Reachtube overestimate bounding the ODE
trajectories
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Problem statement 2

Too wide Reachtube may result in false positives.
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Existing approaches

1 Taylor-expansion in time, variational-expansion in space

1 CAPD,
2 VNode,

2 Taylor-expansion in time and space of the solution set (Taylor
models)

1 Cosy In�nity,
2 Flow*.

3 Bloating-factor-based and discrepancy-function-based approach

C. Fan, J. Kapinski, X. Jin, and S. Mitra. Locally optimal reach set

overapproximation for nonlinear systems. In Proceedings of the 13th

International Conference on Embedded Software, EMSOFT '16, pages

6:1�6:10, New York, NY, USA, 2016. ACM.
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Our approach

Our approach:

Explore possibilities of computation of the Reachtube overestimate

using the Lagrangian coordinates method

and identify advantages of doing so.
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Figure: general idea of Lagrangian (deformed) coordinates source:
wikipedia.org
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We work with time-variant ordinary di�erential equations (ODEs):

x′(t) = F (t, x(t)), (1a)

x(t0) = x0, (1b)

where x : R→ Rn. We assume that F is a smooth function, which
guarantees short-time existence of solutions.
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For t0, set of states X ⊂ Rn, and T > t0, our goal is to compute a
sequence of time-stamped sets of states (R1, t1), . . . , (Rk, tk) satisfying
(tight):

Reach ((t0,X ) , [ti−1, ti]) ⊂ Ri for i = 1, . . . , k,

where Reach ((t0,X ) , [ti−1, ti]) denotes the set of reachable states of
(1) in the interval [ti−1, ti].
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How our algorithm works?

Figure: Illustration of our algorithm
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General idea of the algorithm

1 Compute over-approximation of the gradient of the solution-�ows,
and the Cauchy-Green deformation tensor (currently done by
CAPD library),

2 Optimize for positive-de�nite symmetric matrix M1, de�ning the
weighted norm minimizing the Streching Factor for a choice of
gradient,

3 Compute an upper bound for the Stretching Factor Λ, then the
ball-overestimate is

BM1(φt1t0(x0),Λ · δ0).
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Details 1

Cauchy-Green deformation tensor:

CGDT = (∇Xx)T · ∇Xx. (2)

Stretching factor √
λmax(CGDT ) > 0 (3)
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De�nition

Given positive-de�nite symmetric matrix M ∈ Rn×n we de�ne the
M -norm of Rn vectors by

‖y‖M =
√
yTMy. (4)

Given the decomposition
M = CTC,

the matrix norm inducted by (4) is

‖A‖M =
√
λmax ((CT )−1 ·AT ·M ·A · C−1), (5)
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Notation

Let φt1t0(x) be the solution of (1) with the initial condition (t0, x) at
time t1,
let Dxφ

t1
t0
be the gradient of the �ow.

Let M0,M1 ∈ Rn×n be positive-de�nite symmetric matrices, and
CT
0 C0 = M0, C

T
1 C1 = M1 be their decompositions respectively.
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Theory 1

Theorem

Let X = BM0(x0, δ0) ⊂ Rn be a set of initial states Assume that there

exists a compact, conservative enclosure D ⊂ Rn×n for the gradients,

such that:

Dxφ
t1
t0

(x) ∈ D for all x ∈ X . (6)

Suppose Λ > 0 is such that:

Λ ≥
√
λmax

(
(CT

0 )−1DTM1DC
−1
0

)
, for all D ∈ D.

Then it holds that:

φt1t0(x) ∈ BM1(φt1t0(x0),Λ · δ0).
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Theory 2

Theorem (LRT-Conservativity)

Assume that the rigorous tool used in the Lagrangian Reachtube

Algorithm (LRT) produces conservative gradient enclosures for

system (1), and it guarantees existence of the solutions within time

intervals. Assume also that the LRT terminates on the provided

inputs.

Then, the output of the LRT is a conservative reachtube
over-approximation of (1) at times {tj}kj=0, that is:

((t0,X ), tj) ⊂ BMj ([xj ], δj), for j = 1, . . . , k,

bounded solutions exists for all intermediate times t ∈ (tj , tj+1).
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Implementation

1 To compute an over-approximation of the gradient we use CAPD

library (C1 Lohner algorithm),

2 We implemented an interface to communicate

MATLAB↔ C++,

we optimize for positive de�nite matrix M1 using a Matlab
package, and compute bound for the eigenvalues of the
deformation tensor matrices using Intlab,
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Algorithm instability

Figure: Set of benchmarks from [1] + Lorenz equations L(3), Mitchell
Schae�er cardiac cell model M(2)
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Wrapping e�ect

((a)) ((b)) ((c))

Figure: (a) A ball in the weighted norm given by M of radius 1 (the
ellipsoidal set). (b) The ellipsoidal set in its eigen-coordinates (unrotated).
(c) Volume computation by wrapping the ellipsoidal set in a box: blue
rectangle in eigen-coordinates and green square in canonical-coordinates.
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Furture work
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Figure: Volume comparison for forced Van der Pol Oscillator
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Conclusions

For most of the used benchmarks LRT compares more favorably
to other tools (Flow*, CAPD) in the sense of (F/I)V and (A/I)V
metrics (adapted from [1]),

Apparently, for ODEs exhibiting asymptotically stable behaviour,
LRT results in tighter Reachtube over-approximation,

Some improvements of the algorithm are still possible,

Future goal � Reachtube enclosures for PDEs.
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