
OpenUAV: A UAV Testbed for the CPS and Robotics Community

Matt Schmittle1, Anna Lukina2, Lukas Vacek3, Jnaneshwar Das3,

Christopher P. Buskirk4, Stephen Rees4, Janos Sztipanovits4, Radu Grosu2, and Vijay Kumar3

Abstract— Multirotor Unmanned Aerial Vehicles (UAV) have
grown in popularity for research and education, overcoming
challenges associated with fixed wing and ground robots.
Unfortunately, extensive physical testing can be expensive and
time consuming because of short flight times due to battery
constraints and safety precautions. Simulation tools offer a low
barrier to entry and enable testing and validation before field
trials. However, most of the well-known simulators today have
a high barrier to entry due to the need for powerful computers
and the time required for initial set up. In this paper, we
present OpenUAV, an open source test bed for UAV education
and research that overcomes these barriers. We leverage the
Containers as a Service (CaaS) technology to enable students
and researchers carry out simulations on the cloud. We have
based our framework on open-source tools including ROS,
Gazebo, Docker, PX4, and Ansible, we designed the simulation
framework so that it has no special hardware requirements.
Two use-cases are presented. First, we show how a UAV can
navigate around obstacles, and second, we test a multi-UAV
swarm formation algorithm. To our knowledge, this is the
first open-source, cloud-enabled testbed for UAVs. The code
is available on GitHub: https://github.com/Open-UAV.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), specifically the mul-

tirotor platform, have been rapidly growing in popularity

in robotics and cyber-physical systems research. Multirotors

are UAVs with four or more rotors enabling hovering and

maneuvering similar to a helicopter, but with added stability

and a simplified electro-mechanical configuration [1]. While

fixed wing and helicopter UAVs do not have the precision or

footprint necessary for tasks such as close-range inspection,

or smooth videography, multirotors are compact, allow high

precision control, and can hover, enabling execution of such

tasks. With improved on board computational and sensing

capabilities, these platforms are being used for increasingly

complex missions, and hardware abstraction and end-to-end

simulation tools will accelerate innovation and education as

they allow for more time to be spent designing the algorithms

than on implementation.∗

*Supported by the NSF CPS Virtual Organizations Active Resources
initiative

1M. Schmittle, Department of Computer Science, University of
Delaware

2A. Lukina and R. Grosu, Cyber-Physical Systems Group, Technische
Universitat Wien

3J. Das, L. Vacek, and V. Kumar, GRASP Lab, University of Penn-
sylvania, Philadelphia, PA 19104, USA.

4Christopher P. Buskirk, Stephen Rees,and Janos Sztipanovits, Van-
derbilt University

∗http://usblogs.pwc.com/emerging-technology/lowering-the-barrier-to-
innovation-in-robotics/

Fig. 1: A simulated DJI F450 multirotor as seen on a browser,

enabled through Gzweb on the OpenUAV simulator.

Within the robotics community, the Robot Operating Sys-

tem (ROS)∗ has achieved extensive adoption. ROS simplifies

control through a message passing interface, which helps

reduce errors and accelerates innovation. Simulators, such

as Gazebo,∗ are also essential for developing safety-critical

robotics systems. Gazebo provides an open-source simulator

to test algorithms and controls before moving to a real robot.

For UAVs, tools such as the open-source PX4 project

and QGroundControl have already created autopilots that

can simplify control and basic flight of a multirotor. To

make programming easier, the ROS package MAVROS∗ has

been created to communicate with PX4. MAVROS allows

the user to control the multirotor at a higher level, so the

programmer can focus on algorithmic implementation and

not basic flight. To develop automated control, task-specific

multirotors, and additional future development of UAVs, new

tools and simulators are needed [2].

Currently, to develop UAV software or conduct UAV

experiments, the developer or researcher starts with simu-

lation and then moves to real robots. Figure 2 shows an

example simulation environment. For simulation, the user

(i.e., developer or researcher) usually works with the popular

tools, ROS and Gazebo, with ROS to communicate with the

simulated robot(s) in Gazebo. To run visualization, the user

could use Gazebo or rviz.∗ ROS is ideal for simulation as

it can port directly to a real robot, requiring little change

to run real life testing. The complexity of the simulated

∗http://www.ros.org/about-ros/
∗http://gazebosim.org/
∗http://wiki.ros.org/mavros
∗http://wiki.ros.org/rviz

130

2018 9th ACM/IEEE International Conference on Cyber-Physical Systems

0-7695-6378-3/18/$31.00 ©2018 IEEE
DOI 10.1109/ICCPS.2018.00021

(a) UAV at center of axes pointing forward. The world is for
an obstacle avoidance machine learning task. Visualization is
through Gzweb. The left side is a tool bar of actions that the
user can take to change the world or camera.

(b) Depth map computed from the UAV’s
stereo camera images. Obstacles shown at
varying depths correspond to trees in (a).

Fig. 2: Snapshots of OpenUAV simulation interface.

environment (e.g., number of objects, lighting, collision

checking) and the number of UAVs used, will determine the

power of the computer necessary for simulation.

The process of setting up these tools requires proficiency

in UNIX (or Linux) systems and access to a powerful desktop

computer.∗ This barrier to entry can inhibit researchers and

stagnate innovation of field systems. In education, these

barriers are more prevalent. Students interested in learning

about UAVs may lack Linux knowledge, and there may be

limited access to a powerful computer for an entire class.

Thus, these barriers to entry often slow research and limit

education.

In this paper, we describe OpenUAV, an open-source, web-

based simulation testbed designed specifically for UAVs. To

our knowledge, this is the first open-source, cloud-enabled

testbed for UAVs. By using a cloud-based simulation as seen

in Fig. 2, automated by Ansible,∗ we relieve the users of

prior Linux knowledge for setup and expensive computer

hardware requirements, which together reduce the barrier

to entry. The simulation testbed is based on the popular

PX4 autopilot. Through creating an open source simulation

testbed with little barrier to entry, we seek to increase UAV

research and education. To demonstrate effectiveness of our

testbed, we showcase state-of-the-art machine learning and

multi-UAV simulations by using tools from the ROS and

the Open Source Robotics Foundation (OSRF) community.

OpenUAV can be used for a variety of UAV applications,

such as aerial phytobiopsy [3], or sensor probe deployment

and recovery [4].

Specifically, this paper makes the following contributions:

• the design and implementation of OpenUAV, a cloud-

∗http://www.gazebosim.org/tutorials?tut=guided b1&cat=#Systemrequirements
∗https://www.ansible.com/

based simulation testbed for UAVs with low barrier to

entry,

• two case studies demonstrating the use of OpenUAV for

machine learning and multi-UAV swarms, and

• an observational study of the use of OpenUAV with

lessons learned and opportunities for future improve-

ment.

II. UAV RESEARCH AND EDUCATION NEEDS

UAV research has exploded in the past 10 years, evidenced

by the increase in publications at conferences including

the International Conference on Intelligent Robotics and

Systems (IROS) and International Conference on Robotics

and Automation (ICRA), and increased commercial startups,

including Exyn Technologies∗ and Skydio.∗ Specifically,

multirotors have seen massive growth in development due

to their applicability to a broad range of tasks such as

search and rescue [5], inspection [6], photography [7], and

monitoring [8]. Progress has been made in UAV research

also. High speed navigation [9], multi-UAV swarms [10], and

aerial tracking [11] using simulation and robotics tools have

all seen progress. The necessary simulation and robotics tools

require new researchers to install ROS and Gazebo, have a

strong understanding of Linux, and have a computationally

capable computer to get started in research. These require-

ments raise the barrier to entry, and, more importantly, slow

research.

While almost every computer science department offers

a robotics course today, there are only a few examples

of known courses in UAVs. For example, the University

of Nevada offers a course called Introduction to Aerial

Robotics [12]. Of the specialized robotics courses offered, it

∗https://exyntechnologies.com/
∗https://www.skydio.com/

131

Fig. 3: An overview of the OpenUAV testbed. The user (white) interacts with the front-end interface (blue), which calls the

necessary scripts to run the program with the user settings on the back-end OpenUAV server (red).

is common for them to be only at the graduate level, directed

toward training researchers.

The lack of UAV courses is mainly due to the cost of

multirotors and replacement parts, and the time required to

setup and become familiar with a multirotor programming

interface. Using simulators for teaching is an obvious choice

to mitigate costs. If students can learn about multirotors

through simulation, then they are free to make mistakes

without catastrophic costs. However, current simulators have

a high barrier to entry. Students taking such a course will

be in principle less familiar with robotics than researchers,

but need to work with the same complicated tools that

researchers need to master. One of the goals of our OpenUAV

work is to minimize the problems associated with current

simulation environments to make exploring UAV develop-

ment more accessible to a wider audience and to encourage

the development of more courses on UAVs.

III. RELATED WORK

Gzweb was developed to provide cloud connectivity to the

popular Gazebo simulation.∗ Gzweb is a WebGL client for

Gazebo. With Gzweb, users can visualize and interact with

the simulation in their browser. While this is a useful tool,

Gzweb and Gazebo do not provide enough support for a full

testbed for UAV research and development.

Robot Web Tools [13] offers a suite of open source

visualization and robot interaction tools. It is intended to

allow the user to create web-based robotics applications

through its libraries and tools. This is a good platform to

develop web-based robotics, but it is not a full development

and simulation environment in itself. While each of these

tools are good for general robot development, OpenUAV is

greater than the sum of its parts by integrating its tools in

an easy to use manner.

Another similar commercial tool has been created for ROS

education and development called The Construct.∗ The Con-

struct is a web development environment for ROS-controlled

robots that offers a shell, ROS Tools, simulation environment,

instructional lessons, and the capability to connect to a real

robot. While an effective tool, The Construct limits free users

to slow machines and is not open source. Also, it focuses on

∗https://www.docker.com/what-docker
∗http://gazebosim.org/gzweb
∗http://www.theconstructsim.com/

ROS education specifically, and thus is better for general

robotics education than UAV education.

AirSim [14] is a UAV and car simulator based on Unreal

engine. AirSim is similar to Gazebo in that it is a simulation

environment and not a testbed. It also integrates with PX4

and is based off of Unreal Engine which provides a photo-

realistic simulation. Some limitations of AirSim are its lack

of ROS support and lack of cloud connectivity making

Gazebo the prefered simulator for OpenUAV. While AirSim

is not currently implemented into the OpenUAV platform it

is a possible direction for future work.

IV. THE OPENUAV TESTBED

We designed OpenUAV to meet the following require-

ments:

• The code, visualization, tools, and models/environments

must all be accessible from the cloud.

• The testbed should be a deployable system for system

independence and future cloud computing.

• The back-end simulation should provide communication

to a user through a front-end interface.

• The system should support multiple simultaneous users,

where each user simulation should be contained to

prevent interference between simulations.

• Each simulation should be controllable in an easy to

manage manner.

• The simulation should require little to no setup for the

user beyond experimental parameters.

• The user should experience simulation speeds and re-

sponsiveness similar to running their simulation locally.

A. System Architecture

Figure 3 depicts the overall system architecture of Open-

UAV. The three major components are the OpenUAV server

that hosts the simulation, the front-end interface hosted on

a separate computer, and the communication between the

user, front-end interface, and OpenUAV server. We describe

each of these three components and their technologies in the

following subsections.

B. OpenUAV Server Component

The OpenUAV Server component is responsible for run-

ning the simulations and reporting back the visualization and

132

Fig. 4: A visual representation of containers: A, B, and C. Docker is more lightweight than a virtual machine because it

only copies the files necessary to run the application, not a whole operating system into each container.∗The right shows an

instance of the OpenUAV docker image. ROS Master is the central point for all internal communication through ROS topics.

Gray arrows represent publishing and subscribing to ROS topics. Also shown are the ROS tools and simulator connecting

to the host machine for cloud access through forwarded ports.

simulation data to the front-end interface. The server com-

ponent addresses the requirements of deployability, support

for multiple users, ease of use, speed, and little setup. These

requirements are primarily satisfied by the use of Docker and

Ansible.

1) Simulation Core: This component is the core of the

testbed. It was built using several technologies, including

ROS, Gazebo, PX4, and MAVROS. The main components

of the simulation core are ROS and Gazebo. ROS is a

robotics message passing framework that is designed to

simplify programming various robotics platforms. Each part

of a robotics system has a ROS node. From that node, it

can post and receive messages labeled by their topic. So a

program can post to different topics instead of connecting to

each part through a different API. ROS is used in the user

program for control and sensing of the robot and simulation

environment. It also provides the log data and additional live

monitoring for all messages being passed.

Gazebo is a robotics simulator that can be used for

indoor and outdoor applications. It comes with a physics en-

gine, simulating the dynamical properties of objects as well

as inter-object collisions. Gazebo simulates aerodynamics

through its LiftDragPlugin.∗ Due to the computational lim-

itations of solving complex fluid dynamics for each model,

Gazebo applies all of the forces to the object links directly

in accordance to the physics of lift and drag. It also provides

a cloud visualization tool, Gzweb, and its own ROS topics.

We use Gazebo to simulate the robot and environment, and

Gzweb to visualize and manually interact with the simulation

environment. Synchronization between Gazebo and ROS is

∗http://gazebosim.org/tutorials?tut=aerodynamics&cat=plugins

mangaged through the shared ROS clock. Together ROS and

Gazebo make the basic framework of a robotic simulation.

Fig. 5: The DJI F450 airframe and Intel NUC i5 based

multirotor UAV model used in the OpenUAV simulator.

PX4∗ and MAVROS add to the ROS and Gazebo core

by incorporating a UAV-specific interface. PX4 is an open

source autopilot and hardware platform. It is used to pro-

vide basic functions such as hovering, way point following,

landing/takeoff, and reading sensor data. MAVROS is a

ROS package that simplifies the communication and control

between the user and the UAV by converting ROS messages

to MAVLink protocol.∗ This allows a user to interact with

the UAV through ROS topics.

∗http://px4.io/about-us/
∗http://qgroundcontrol.org/mavlink/start

133

Fig. 6: The communication between the OpenUAV server, CPS-VO webpage, and Researcher/Student. As shown, Ansible

is managing each Docker container, and the containers are connecting to the host machine through the forwarded ports.

The CPS-VO page is controlling communicating with the OpenUAV server through calling Ansible scripts and the server is

sending back visualization, ROSbags, and a terminal connection.

PX4 and Mavros reduce the gap between simulation and

real world testing by providing software in the loop (SITL)

and hardware in the loop (HITL) simulations that work with

Gazebo. SITL allows the user to test with code that would

work the same on a real UAV, and HITL runs that code on

the UAV computer, but simulates on the testing computer so

as to test computation time.

This work is focused on SITL as the user is on a remote

machine, and the testbed would not be scalable if we had to

have a series of HITL computers connected to the simulation

machine. We were able to add to the basic simulation our

own DJI Flame Wheel F450 frame based multirotor as seen

in Figure 5 that is used in the annual NSF CPS UAV Student

Challenge 2016∗ and expand the system for our own testing

described later.

2) Containing Simulations Using Docker and Ansible:
We designed OpenUAV to isolate each user simulation using

the Containers as a Service (CaaS) paradigm. To do so, we

use Docker, a popular CaaS platform.∗ Simulations using a

CaaS platform offers multiple advantages. First, it eliminates

interference between simulations, allowing multiple users to

run multiple scenarios in parallel. Second, by provisioning

powerful servers, simulations can scale through an arbitrary

number of containers constrained only by the resources of

the server. Finally, using tools such as Ansible, complex

simulation (i.e., container) orchestration can be carried out.

The left side of Figure 4 shows a visual representation

of docker containers. Docker provides a lightweight virtual

environment separate from the host machine (in our case, the

OpenUAV server) for running simulations. It can connect

∗https://cps-vo.org/group/CPSchallenge
∗https://www.docker.com/what-docker

to the host machine through forwarded ports that can be

forwarded to other servers. Docker images are blueprints

of the environment that can be instantiated into containers.

Images are created through scripts called dockerfiles.

The right side of Figure 4 shows an instance of our docker

image. We created a docker image by developing a custom

dockerfile for the OpenUAV simulation that has all of the

packages, tools, and dependencies pre-installed. This docker

image with pre-installed software achieves the isolation of

the simulation testbed. From there, we forwarded ports for

visualization and monitoring.

Each container instance created from the docker image is

used for one simulation and then destroyed. The creation,

running, and tear down of each simulation is automated

by Ansible. Ansible is an automation system that has been

designed to work well with docker containers. Similar to

shell scripting, Ansible utilizes the YAML programming

language to make scripts easy to run and read. Ansible allows

the front end interface to interact with the containers through

running simple scripts.

C. Front-End Interface

The front-end interface is responsible for user authentica-

tion and clean interfacing with the simulations. The front-end

interface satisfies the cloud accessibility requirements of the

testbed as it is hosted on the Cyber-Physical Systems Virtual

Organization (CPS-VO)∗ website. The CPS-VO is a virtual

organization from academia and industry with the goal of

growing the knowledge about cyber-physical systems. Fig 7

is a view of the visualization through the front-end interface.

∗https://cps-vo.org/

134

D. Communication Architecture and CPS-VO Interface

The main novelty of this UAV testbed is that it is cloud

enabled. This allows the user to design and test on any

platform from anywhere. The communication architecture

is responsible for satisfying the requirement of providing a

connection to the back-end interface through the CPS-VO.

While the back end can be accessed over ssh, ssh is not a

scalable secure form of access. It also adds a learning curve

to students who are new to Linux. To add security, scalability,

and simplicity, we are in the process of connecting the back-

end simulation with the CPS-VO interface.

Fig. 7: The CPS-VO allows users to access the cloud-based

OpenUAV simulation stack after authenticating into the VO

website.

Fig 6 shows the communication between the back-end

OpenUAV server and the front-end interface. The communi-

cation occurs in two stages. First, there is communication

from a Docker container to the host machine, OpenUAV

server, running Ansible. Second, there is communication that

occurs from the host machine, OpenUAV server, to the CPS-

VO interface and back. To provide security, SSL encryption

is used with user authentication on the front end. The

simulation is controlled through a call to an Ansible script

by the VO interface. Visualization during the simulation is

sent back through Gzweb. Post simulation, ROSbags, which

are ROS logs, will be sent to the user for evaluation. Future

work will include adding tools similar to rviz and a shell in

the interface for debugging.

V. SYSTEM TESTING THROUGH CASE STUDIES

To test a simulation testbed, the important factors to

consider are computational load, user interface, simula-

tion limitations, and popular use cases. To evaluate the

effectiveness of OpenUAV meeting our requirements, we

chose computationally demanding test scenarios, among the

many potential use cases for OpenUAV. Specifically, we

implemented a machine-learning based UAV navigation test

scenario and a multi-UAV swarm formation test scenario.

We chose these scenarios as they were more computationally

challenging, current research areas in our lab, and were more

likely to find flaws than a simple UAV task. In addition,

the multi-UAV test was done by a user not involved with

the OpenUAV simulator development, further showing its

usability.

Specifically, with the multi-UAV task, we were able to

determine how easy it is to setup and control multiple

UAV’s with our modified PX4 control. With the machine

learning task, we were able to test how effective Tensorboard

is as a cloud-enabled monitoring tool and the impacts of

machine learning on simulation responsiveness to the user.

We report on our observations from these two implemented

test scenarios using OpenUAV in the following section.

A. UAV Machine Learning Challenge

Due to machine learning’s growing popularity and appli-

cations, we wanted to test the simulation stack on a set

of machine learning tasks. We decided to focus on neural

networks specifically because they present unique challenges

that a simulator must be able to address, and we wanted to

explore performing a demanding machine learning task for

the simulator. In addition, we could leverage current work

on UAV navigation [15].

Machine learning is used for solving problems that may

not necessarily have a clear answer but have access to

training data [16]. There are many different machine learning

algorithms for solving different problems such as classifi-

cation or image segmentation. Neural networks specifically

are good at generalizing from training data for a diversity

of tasks [16]. The network used is a deepQ network, which

means the network is the Q-function in Q-learning. It takes

in some state and outputs Q values, or expected benefit, for

each of the potential actions. We are able to implement this

neural network through the TensorFlow [17] library.

The first challenge of neural networks is that they must

have a large set of training data. This means that the

simulator must run continuously for long periods of time.

The second challenge is that a diverse training set is needed

to generalize well. To create this training set, the environment

must change dynamically within each episode [18].

To examine machine learning-based UAV simulations un-

der different scenarios, we tested three different scenarios:

(1) a homing task where the agent was told where the target

is, (2) a visual servoing task where the agent had to home in

on an apriltag below it, and (3) an obstacle avoidance task

where the agent had to navigate a forest-like environment.

To set up a diverse environment in scenarios (1) and (2), the

target moved after each episode. In scenario (3), the network

was saved to switch to a new environment once it completed

one environment.

We were able to monitor the agents’ progress continuously

135

Fig. 8: The Tensorboard browser interface from the obstacle avoidance simulation.

over the Internet via TensorBoard.∗ Tensorboard allows

constant live monitoring of learning statistics. In addition,

it allows users to view raw data and network structures.

Tensorboard is hosted inside the simulation container, and

gets data by reading from a continuously updated log file.

The main challenge of Tensorboard was to make sure it

was accessible from outside the container. We were able to

achieve this through a forwarded port to the host machine.

Figure 8 shows the Tensorboard browser interface from the

obstacle avoidance simulation.

Our focus was on creating an effective training simulator

and then a good policy for the task. We focused on what

was required of the simulator for machine learning. The

most important thing we found was the ability to reset upon

failure or success. On the simpler tasks, such as servoing,

only the target had to be reset. We found resetting on the

obstacle avoidance task to be much more challenging, in

part, because PX4 was not primarily designed to work in

simulated environments. The PX4 position estimator had no

way of being reset which caused a multirotor position reset

to the origin make the multirotor move aggressively towards

its old waypoint before the position estimator caught up with

the actual location. The position estimator uses a Kalman

filter [19], which, for a large value change, takes a series of

samples before it will shift to the correct value. We overcame

this by landing prior to a position reset, then waiting for

the position estimator to catch up with the actual location

before taking off. Task (1) was successfully learned to home

on a target. The visual servoing and obstacle avoidance tasks

needed more work on the learning side to perform well. A

video of the basic obstacle avoidance can be found here:

https://youtu.be/hQ5Pend41VM. Future work is needed to

speed up the simulation beyond real time and early error

detection via continuous integration.

∗https://www.tensorflow.org/get started/summaries and tensorboard

B. Multi-UAV Swarm Formations

The goal of the multi-UAV case study was to determine

how easy it is to setup and control multiple UAV’s with our

modified PX4 control. PX4 was not created to control mul-

tiple UAV’s. We modified PX4 to simulate multiple UAV’s,

each controlled independently. We chose a use case for plan

optimization with multiple UAVs. In this case, MATLAB

is used to synthesize a plan that brings n agents from an

arbitrary initial configuration to a so-called V-formation.

This formation has been proven to be energy efficient for

birds on long-distance flights. The vortex generated near

the wingtips of a bird offers an upwash benefit for the

other following birds but only given they avoid downwash

formed directly behind the bird as depicted in Figure 9.

The same principle has been exploited by aircraft for fuel

conservation on military flight missions. In [20], the authors

model bird-flocking behavior as a stochastic process and

propose an approximation algorithm for plan synthesis. The

approach combines model-predictive control with particle

swarm optimization to find a sequence of best actions at

each step.

clear view
velocity matching

upwash benefit

downwash

Fig. 9: Optimal positions in V-formation: clear view, velocity

matching, and upwash benefit for each bird, except for the

leader of the flock which does not receive the upwash benefit.

Field experiments with Crazyflie 2.0 Nano Quadcopters∗

∗https://www.bitcraze.io/crazyflie-2/

136

using Vicon Motion Capture System∗ highlighted that testing

of the planning algorithms for the drone swarms has to be

performed in a simulation environment prior to deployment

due to the challenges posed by the real-world environment,

as well as sensor and actuator noises. However, achieving

a formation of drones requires emulating the dynamics as

close as possible to reality to identify the risks of collisions

or interferences between multiple UAVs.

We chose V-formation for the multirotors as planning of

the close formation flights for them should be downwash-

aware as well as for winged vehicles. The MATLAB com-

putations were performed offline and passed to the low-

level controller as a set of waypoints. The current state

of the art relied heavily on the environmental conditions

and smoothness of the trajectories, which limited the ex-

periments to three drones and wide formations. In contrast,

OpenUAV allowed us to simulate larger flocks and study the

performance of the algorithm on more challenging starting

configurations.

Experiments in [20] were executed using a MATLAB

setup that produced a sequence of matrices as an optimal

plan. Each matrix consists of positions for each agent at each

step of the plan. Such matrices can be fairly easily passed

to an OpenUAV controller in Python and serve as waypoints

for the drones. Based on a given set of points the multi-

UAV control further computes accelerations for all robots

to follow the plan. To use the OpenUAV stack, we wrote a

node that subscribes to a multi-UAV pose array published by

the Matlab code. Then, the OpenUAV ROS node publishes

the desired position and yaw (set as a fixed value) to the

PX4 position controller on each UAV. The simulation can be

monitored during a mission on Gzweb (Figure 10), and a

rosbag file can be collected afterwards for analysis. Naturally,

since aerodynamic considerations are not addressed in the

OpenUAV stack, it serves as a way for testing and debugging

the system before actual field trials.

Visualizing a realistic course of events in case the drones

are at risk of colliding, the OpenUAV simulator helps detect

collisions that can be caused by close formations, which may

not appear risky in offline Matlab calculations. Additionally,

injecting stochastic external noise as an attack on each robot

allows to play controller-attacker games, where the control

input is to be synthesized online as the best response to

attacks on-the-fly [21]. Future computations will be done

in C++ to enable direct publishing to the PX4 position

controller. Moreover, it is planned to introduce the downwash

generated by each UAV into the simulation model to study

its effect on the optimal solutions.

VI. ANALYSIS OF CASE STUDY RESULTS

In this section, we report on our observations of lessons

learned from the two case studies of OpenUAV testing.

In the machine learning tasks, we found that overall

OpenUAV worked effectively to simulate and train a UAV

on machine learning tasks. The main roadblocks to machine

∗https://www.vicon.com/motion-capture/engineering

Fig. 10: Screenshot showing a simplified 2D visualization

(top), as well as Gzweb view of four UAVs in formation on

the OpenUAV simulator.

learning for UAVs that we experienced were the difficulty

with resetting the UAV and the time required to train. While

it is possible to circumvent PX4’s limitations with positional

reset, time requirements are harder to fix. We found that

speeding up the simulation caused erratic behavior, rendering

speedup useless.

In the multi-UAV task, we found that OpenUAV was able

to use more challenging initial multirotor configurations and

simulate on larger flocks than previous approaches. Since

the multi-UAV computation was in MATLAB, we were able

to test its ability to integrate with OpenUAV. The main

limitation to MATLAB was that it is proprietary software,

which has two ramifications: (1) We could not integrate

it onto the simulation server. (2) The user has to feed

the data in or communicate it from their local machine.

For the purpose of testing, we chose to feed the data in

post calculation. We also found that while the simulation

ran smooth, visualization over Gzweb for more than one

multirotor was lagged, because Gzweb renders the simulation

on the user’s machine. Future work to simplify the multirotor

model or visualize through RobotWebTools could help speed

up visualization for multi-UAV swarms.

Both case studies demonstrated that OpenUAV can serve

as an effective testbed for UAV simulation. While the case

studies were effective on the testbed, both lacked a simple

user interface because the communication to the front-end

interface was under development. The users had to connect

through ssh while also viewing Gzweb, and Tensorboard on

137

separate urls. Despite this, users connected remotely, little

installation was required, and no local computer requirements

for the remote user were necessary for the tests. In addition,

multiple simulations could run simultaneously with no inter-

ference.

VII. LOAD TESTING FOR MULTIPLE USERS

In order for OpenUAV to be used for education, it must

support multiple users simultaneously. The current hardware

setup for OpenUAV is a simulator server setup with a 32

core Xeon CPU, with 64 GB DDR3 RAM, and 2 Titan X

GPU’s. Each user simulation is in its own container and for

testing we had UAV’s flying in patterns running basic vision

algorithms from their onboard cameras. We found that each

individual container can efficiently handle up to 6 UAV’s and

the whole system can handle 30 UAV’s with no cameras and

9 with camera’s. For future work, we would like to move

OpenUAV to a scalable cloud computing solution so as to

handle more users and UAV’s.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented OpenUAV, the first cloud-

enabled, open source simulation testbed for UAV research

and education. Based on open source software, we offer this

simulator free for public use towards reducing the cost of

research and education, and to promote further development

of the simulator. By being cloud enabled, we have lowered

the barrier to entry to UAV development and research by

not requiring specific hardware or complicated setup. By

using Docker and Ansible, we have made the simulation

deployable and workflow automated, for a potential push

to a cloud computing service. We have also demonstrated

effective use of this testbed for computationally challenging

machine learning and multi-UAV simulations successfully

including testing done by a user not involved with devel-

opment.

Future work will focus on implementing the designed

connection between the testbed and the front-end interface,

so as to even further reduce the barrier to entry and to provide

cleaner authentication to the system. In addition, we seek

to expand the basic testbed to encompass more multirotor

platforms and environments for a variety of potential tasks.

Finally, we plan to take advantage of Ansible to incorporate

continuous integration into the system.

ACKNOWLEDGMENT

We gratefully acknowledge NSF grant CNS-1521617,

USDA grant 2015-67021-23857 under the National Robotics

Initiative, a gift from Microsoft Research, the Doctoral

Program Logical Methods in Computer Science and the

Austrian National Research Network RiSE/SHiNE (S11412-

N23) project funded by the Austrian Science Fund (FWF)

project W1255-N23 for supporting this work.

REFERENCES

[1] G. Shweta, P. Infant Teenu Mohandas, and J. Conrad, “A survey of
quadrotor Unmanned Aerial Vehicles,” pp. 1–6, 03 2012.

[2] D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, 5 2015.

[3] D. Orol, J. Das, L. Vacek, I. Orr, M. Paret, C. J. Taylor, and
V. Kumar, “An aerial phytobiopsy system: Design, evaluation, and
lessons learned,” in 2017 International Conference on Unmanned
Aircraft Systems (ICUAS), June 2017, pp. 188–195.

[4] L. Vacek, E. Atter, P. Rizo, B. Nam, R. Kortvelesy, D. Kaufman,
J. Das, and V. Kumar, “sUAS for deployment and recovery of an
environmental sensor probe,” in 2017 International Conference on
Unmanned Aircraft Systems (ICUAS), June 2017, pp. 1022–1029.

[5] S. Waharte and N. Trigoni, “Supporting Search and Rescue Operations
with UAVs,” in Proceedings of the 2010 International Conference
on Emerging Security Technologies, ser. EST ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 142–147. [Online].
Available: http://dx.doi.org/10.1109/EST.2010.31

[6] C. Deng, S. Wang, Z. Huang, Z. Tan, and J. Liu, “Unmanned
Aerial Vehicles for Power Line Inspection: A Cooperative Way
in Platforms and Communications,” JCM, vol. 9, no. 9, pp. 687–
692, 2014. [Online]. Available: http://dblp.uni-trier.de/db/journals/
jcm/jcm9.html#DengWHTL14

[7] S. Hamilton and J. Stephenson, “Testing UAV (drone) aerial photogra-
phy and photogrammetry for archeology,” Lakehead University, Tech.
Rep., 03 2016.

[8] T. F. Villa, F. Gonzalez, B. Miljievic, R. Zoran D., and
L. Morawska, “An Overview of Small Unmanned Aerial Vehicles
for Air Quality Measurements: Present Applications and Future
Prospectives,” Sensors, vol. 16, no. 7, 2016. [Online]. Available:
http://www.mdpi.com/1424-8220/16/7/1072

[9] B. Lopez and J. How, “Aggressive 3-D collision avoidance for high-
speed navigation,” IEE/RSJ International Conference on Robotics and
Automation (ICRA), 07 2017.

[10] M. Saska, T. Baca, J. Thomas, J. Chudoba, L. Preucil, T. Krajnik,
J. Faigl, G. Loianno, and V. Kumar, “System for deployment
of groups of unmanned micro aerial vehicles in gps-denied
environments using onboard visual relative localization,” Autonomous
Robots, vol. 41, no. 4, pp. 919–944, Apr 2017. [Online]. Available:
https://doi.org/10.1007/s10514-016-9567-z

[11] J. Thomas, J. Welde, G. Loianno, K. Daniilidis, and V. Kumar,
“Autonomous Flight for Detection, Localization, and Tracking of
Moving Targets With a Small Quadrotor,” vol. PP, pp. 1–1, 05 2017.

[12] A. Kostas, “CSE 491/691: Introduction to Aerial Robotics,” 2016.
[Online]. Available: https://www.unr.edu/Documents/engineering/cse/
S16-Syllabi/CS491-Syllabus-S16.pdf

[13] T. Russell, K. Julius, L. David, L. Jihoon, C. J. Odest, S. Osentoski,
W. Mitchell, and S. Chernova, “Robot Web Tools: Efficient Messaging
for Cloud Robotics,” IEE/RSJ International Conference on Intelligent
Robotics and Systems (IROS), 2015.

[14] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-
fidelity visual and physical simulation for autonomous vehicles,”
in Field and Service Robotics, 2017. [Online]. Available: https:
//arxiv.org/abs/1705.05065

[15] M. Schmittle and C. Rasmussen, “Exploring DeepQ Learning for
Micro UAV Tree Avoidance,” 2017, iROS-Abstract Only.

[16] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,”
2016, book in preparation for MIT Press. [Online]. Available:
http://www.deeplearningbook.org

[17] “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing Atari with Deep
Reinforcement Learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[19] L. Kleeman, “Understanding and Applying Kalman Filtering,” 2006.
[Online]. Available: http://biorobotics.ri.cmu.edu/papers/sbp papers/
integrated3/kleeman kalman basics.pdf

[20] A. Lukina, L. Esterle, C. Hirsch, E. Bartocci, J. Yang, A. Tiwari, S. A.
Smolka, and R. Grosu, “ARES: adaptive receding-horizon synthesis
of optimal plans,” in Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS 2017,
ser. LNCS, vol. 10206, 2017, pp. 286–302. [Online]. Available:
https://doi.org/10.1007/978-3-662-54580-5 17

138

[21] A. Tiwari, S. A. Smolka, L. Esterle, A. Lukina, J. Yang, and R. Grosu,
“Attacking the V: on the resiliency of adaptive-horizon MPC,” in Au-
tomated Technology for Verification and Analysis - 15th International
Symposium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings,
ser. Lecture Notes in Computer Science, D. D’Souza and K. N. Kumar,
Eds., vol. 10482. Springer, 2017, pp. 446–462.

139

