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Abstract— Multirotor Unmanned Aerial Vehicles (UAV) have
grown in popularity for research and education, overcoming
challenges associated with fixed wing and ground robots.
Unfortunately, extensive physical testing can be expensive and
time consuming because of short flight times due to battery
constraints and safety precautions. Simulation tools offer a low
barrier to entry and enable testing and validation before field
trials. However, most of the well-known simulators today have
a high barrier to entry due to the need for powerful computers
and the time required for initial set up. In this paper, we
present OpenUAY, an open source test bed for UAV education
and research that overcomes these barriers. We leverage the
Containers as a Service (CaaS) technology to enable students
and researchers carry out simulations on the cloud. We have
based our framework on open-source tools including ROS,
Gazebo, Docker, PX4, and Ansible, we designed the simulation
framework so that it has no special hardware requirements.
Two use-cases are presented. First, we show how a UAV can
navigate around obstacles, and second, we test a multi-UAV
swarm formation algorithm. To our knowledge, this is the
first open-source, cloud-enabled testbed for UAVs. The code
is available on GitHub: https://github.com/Open-UAV.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), specifically the mul-
tirotor platform, have been rapidly growing in popularity
in robotics and cyber-physical systems research. Multirotors
are UAVs with four or more rotors enabling hovering and
maneuvering similar to a helicopter, but with added stability
and a simplified electro-mechanical configuration [1]. While
fixed wing and helicopter UAVs do not have the precision or
footprint necessary for tasks such as close-range inspection,
or smooth videography, multirotors are compact, allow high
precision control, and can hover, enabling execution of such
tasks. With improved on board computational and sensing
capabilities, these platforms are being used for increasingly
complex missions, and hardware abstraction and end-to-end
simulation tools will accelerate innovation and education as
they allow for more time to be spent designing the algorithms
than on implementation.*
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Fig. 1: A simulated DJI F450 multirotor as seen on a browser,
enabled through Gzweb on the OpenUAV simulator.

Within the robotics community, the Robot Operating Sys-
tem (ROS)* has achieved extensive adoption. ROS simplifies
control through a message passing interface, which helps
reduce errors and accelerates innovation. Simulators, such
as Gazebo,” are also essential for developing safety-critical
robotics systems. Gazebo provides an open-source simulator
to test algorithms and controls before moving to a real robot.

For UAVs, tools such as the open-source PX4 project
and QGroundControl have already created autopilots that
can simplify control and basic flight of a multirotor. To
make programming easier, the ROS package MAVROS* has
been created to communicate with PX4. MAVROS allows
the user to control the multirotor at a higher level, so the
programmer can focus on algorithmic implementation and
not basic flight. To develop automated control, task-specific
multirotors, and additional future development of UAVs, new
tools and simulators are needed [2].

Currently, to develop UAV software or conduct UAV
experiments, the developer or researcher starts with simu-
lation and then moves to real robots. Figure 2 shows an
example simulation environment. For simulation, the user
(i.e., developer or researcher) usually works with the popular
tools, ROS and Gazebo, with ROS to communicate with the
simulated robot(s) in Gazebo. To run visualization, the user
could use Gazebo or rviz.* ROS is ideal for simulation as
it can port directly to a real robot, requiring little change
to run real life testing. The complexity of the simulated

*http://www.ros.org/about-ros/
*http://gazebosim.org/
*http://wiki.ros.org/mavros
*http://wiki.ros.org/rviz
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(a) UAV at center of axes pointing forward. The world is for
an obstacle avoidance machine learning task. Visualization is
through Gzweb. The left side is a tool bar of actions that the
user can take to change the world or camera.

(b) Depth map computed from the UAV’s
stereo camera images. Obstacles shown at
varying depths correspond to trees in (a).

Fig. 2: Snapshots of OpenUAV simulation interface.

environment (e.g., number of objects, lighting, collision
checking) and the number of UAVs used, will determine the
power of the computer necessary for simulation.

The process of setting up these tools requires proficiency
in UNIX (or Linux) systems and access to a powerful desktop
computer.” This barrier to entry can inhibit researchers and
stagnate innovation of field systems. In education, these
barriers are more prevalent. Students interested in learning
about UAVs may lack Linux knowledge, and there may be
limited access to a powerful computer for an entire class.
Thus, these barriers to entry often slow research and limit
education.

In this paper, we describe OpenUAYV, an open-source, web-
based simulation testbed designed specifically for UAVs. To
our knowledge, this is the first open-source, cloud-enabled
testbed for UAVs. By using a cloud-based simulation as seen
in Fig. 2, automated by Ansible,” we relieve the users of
prior Linux knowledge for setup and expensive computer
hardware requirements, which together reduce the barrier
to entry. The simulation testbed is based on the popular
PX4 autopilot. Through creating an open source simulation
testbed with little barrier to entry, we seek to increase UAV
research and education. To demonstrate effectiveness of our
testbed, we showcase state-of-the-art machine learning and
multi-UAV simulations by using tools from the ROS and
the Open Source Robotics Foundation (OSRF) community.
OpenUAV can be used for a variety of UAV applications,
such as aerial phytobiopsy [3], or sensor probe deployment
and recovery [4].

Specifically, this paper makes the following contributions:

o the design and implementation of OpenUAYV, a cloud-

*http://www.gazebosim.org/tutorials?tut=guided_b1&cat=#Systemrequirements
*https://www.ansible.com/
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based simulation testbed for UAVs with low barrier to
entry,

« two case studies demonstrating the use of OpenUAV for
machine learning and multi-UAV swarms, and

o an observational study of the use of OpenUAV with
lessons learned and opportunities for future improve-
ment.

II. UAV RESEARCH AND EDUCATION NEEDS

UAV research has exploded in the past 10 years, evidenced
by the increase in publications at conferences including
the International Conference on Intelligent Robotics and
Systems (IROS) and International Conference on Robotics
and Automation (ICRA), and increased commercial startups,
including Exyn Technologies* and Skydio.* Specifically,
multirotors have seen massive growth in development due
to their applicability to a broad range of tasks such as
search and rescue [5], inspection [6], photography [7], and
monitoring [8]. Progress has been made in UAV research
also. High speed navigation [9], multi-UAV swarms [10], and
aerial tracking [11] using simulation and robotics tools have
all seen progress. The necessary simulation and robotics tools
require new researchers to install ROS and Gazebo, have a
strong understanding of Linux, and have a computationally
capable computer to get started in research. These require-
ments raise the barrier to entry, and, more importantly, slow
research.

While almost every computer science department offers
a robotics course today, there are only a few examples
of known courses in UAVs. For example, the University
of Nevada offers a course called Introduction to Aerial
Robotics [12]. Of the specialized robotics courses offered, it

*https://exyntechnologies.com/
*https://www.skydio.com/
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Fig. 3: An overview of the OpenUAV testbed. The user (white) interacts with the front-end interface (blue), which calls the
necessary scripts to run the program with the user settings on the back-end OpenUAV server (red).

is common for them to be only at the graduate level, directed
toward training researchers.

The lack of UAV courses is mainly due to the cost of
multirotors and replacement parts, and the time required to
setup and become familiar with a multirotor programming
interface. Using simulators for teaching is an obvious choice
to mitigate costs. If students can learn about multirotors
through simulation, then they are free to make mistakes
without catastrophic costs. However, current simulators have
a high barrier to entry. Students taking such a course will
be in principle less familiar with robotics than researchers,
but need to work with the same complicated tools that
researchers need to master. One of the goals of our OpenUAV
work is to minimize the problems associated with current
simulation environments to make exploring UAV develop-
ment more accessible to a wider audience and to encourage
the development of more courses on UAVs.

III. RELATED WORK

Gzweb was developed to provide cloud connectivity to the
popular Gazebo simulation.* Gzweb is a WebGL client for
Gazebo. With Gzweb, users can visualize and interact with
the simulation in their browser. While this is a useful tool,
Gzweb and Gazebo do not provide enough support for a full
testbed for UAV research and development.

Robot Web Tools [13] offers a suite of open source
visualization and robot interaction tools. It is intended to
allow the user to create web-based robotics applications
through its libraries and tools. This is a good platform to
develop web-based robotics, but it is not a full development
and simulation environment in itself. While each of these
tools are good for general robot development, OpenUAV is
greater than the sum of its parts by integrating its tools in
an easy to use manner.

Another similar commercial tool has been created for ROS
education and development called The Construct.* The Con-
struct is a web development environment for ROS-controlled
robots that offers a shell, ROS Tools, simulation environment,
instructional lessons, and the capability to connect to a real
robot. While an effective tool, The Construct limits free users
to slow machines and is not open source. Also, it focuses on

*https://www.docker.com/what-docker
*http://gazebosim.org/gzweb
*http://www.theconstructsim.com/
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ROS education specifically, and thus is better for general
robotics education than UAV education.

AirSim [14] is a UAV and car simulator based on Unreal
engine. AirSim is similar to Gazebo in that it is a simulation
environment and not a testbed. It also integrates with PX4
and is based off of Unreal Engine which provides a photo-
realistic simulation. Some limitations of AirSim are its lack
of ROS support and lack of cloud connectivity making
Gazebo the prefered simulator for OpenUAV. While AirSim
is not currently implemented into the OpenUAV platform it
is a possible direction for future work.

IV. THE OPENUAV TESTBED

We designed OpenUAV to meet the following require-
ments:

The code, visualization, tools, and models/environments
must all be accessible from the cloud.

The testbed should be a deployable system for system
independence and future cloud computing.

The back-end simulation should provide communication
to a user through a front-end interface.

The system should support multiple simultaneous users,
where each user simulation should be contained to
prevent interference between simulations.

Each simulation should be controllable in an easy to
manage manner.

The simulation should require little to no setup for the
user beyond experimental parameters.

The user should experience simulation speeds and re-
sponsiveness similar to running their simulation locally.

A. System Architecture

Figure 3 depicts the overall system architecture of Open-
UAV. The three major components are the OpenUAV server
that hosts the simulation, the front-end interface hosted on
a separate computer, and the communication between the
user, front-end interface, and OpenUAV server. We describe
each of these three components and their technologies in the
following subsections.

B. OpenUAV Server Component

The OpenUAV Server component is responsible for run-
ning the simulations and reporting back the visualization and
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simulation data to the front-end interface. The server com-
ponent addresses the requirements of deployability, support
for multiple users, ease of use, speed, and little setup. These
requirements are primarily satisfied by the use of Docker and
Ansible.

1) Simulation Core: This component is the core of the
testbed. It was built using several technologies, including
ROS, Gazebo, PX4, and MAVROS. The main components
of the simulation core are ROS and Gazebo. ROS is a
robotics message passing framework that is designed to
simplify programming various robotics platforms. Each part
of a robotics system has a ROS node. From that node, it
can post and receive messages labeled by their topic. So a
program can post to different topics instead of connecting to
each part through a different API. ROS is used in the user
program for control and sensing of the robot and simulation
environment. It also provides the log data and additional live
monitoring for all messages being passed.

Gazebo is a robotics simulator that can be used for
indoor and outdoor applications. It comes with a physics en-
gine, simulating the dynamical properties of objects as well
as inter-object collisions. Gazebo simulates aerodynamics
through its LiftDragPlugin.* Due to the computational lim-
itations of solving complex fluid dynamics for each model,
Gazebo applies all of the forces to the object links directly
in accordance to the physics of lift and drag. It also provides
a cloud visualization tool, Gzweb, and its own ROS topics.
We use Gazebo to simulate the robot and environment, and
Gzweb to visualize and manually interact with the simulation
environment. Synchronization between Gazebo and ROS is

*http://gazebosim.org/tutorials ?tut=aerodynamics&cat=plugins
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mangaged through the shared ROS clock. Together ROS and
Gazebo make the basic framework of a robotic simulation.
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Fig. 5: The DJI F450 airframe and Intel NUC i5 based
multirotor UAV model used in the OpenUAV simulator.

PX4* and MAVROS add to the ROS and Gazebo core
by incorporating a UAV-specific interface. PX4 is an open
source autopilot and hardware platform. It is used to pro-
vide basic functions such as hovering, way point following,
landing/takeoff, and reading sensor data. MAVROS is a
ROS package that simplifies the communication and control
between the user and the UAV by converting ROS messages
to MAVLink protocol.* This allows a user to interact with
the UAV through ROS topics.

*http://px4.io/about-us/
*http://qgroundcontrol.org/mavlink/start
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PX4 and Mavros reduce the gap between simulation and
real world testing by providing software in the loop (SITL)
and hardware in the loop (HITL) simulations that work with
Gazebo. SITL allows the user to test with code that would
work the same on a real UAV, and HITL runs that code on
the UAV computer, but simulates on the testing computer so
as to test computation time.

This work is focused on SITL as the user is on a remote
machine, and the testbed would not be scalable if we had to
have a series of HITL computers connected to the simulation
machine. We were able to add to the basic simulation our
own DJI Flame Wheel F450 frame based multirotor as seen
in Figure 5 that is used in the annual NSF CPS UAV Student
Challenge 2016* and expand the system for our own testing
described later.

2) Containing Simulations Using Docker and Ansible:
We designed OpenUAV to isolate each user simulation using
the Containers as a Service (CaaS) paradigm. To do so, we
use Docker, a popular CaaS platform.” Simulations using a
CaaS platform offers multiple advantages. First, it eliminates
interference between simulations, allowing multiple users to
run multiple scenarios in parallel. Second, by provisioning
powerful servers, simulations can scale through an arbitrary
number of containers constrained only by the resources of
the server. Finally, using tools such as Ansible, complex
simulation (i.e., container) orchestration can be carried out.

The left side of Figure 4 shows a visual representation
of docker containers. Docker provides a lightweight virtual
environment separate from the host machine (in our case, the
OpenUAV server) for running simulations. It can connect

*https://cps-vo.org/group/CPSchallenge
*https://www.docker.com/what-docker

to the host machine through forwarded ports that can be
forwarded to other servers. Docker images are blueprints
of the environment that can be instantiated into containers.
Images are created through scripts called dockerfiles.

The right side of Figure 4 shows an instance of our docker
image. We created a docker image by developing a custom
dockerfile for the OpenUAV simulation that has all of the
packages, tools, and dependencies pre-installed. This docker
image with pre-installed software achieves the isolation of
the simulation testbed. From there, we forwarded ports for
visualization and monitoring.

Each container instance created from the docker image is
used for one simulation and then destroyed. The creation,
running, and tear down of each simulation is automated
by Ansible. Ansible is an automation system that has been
designed to work well with docker containers. Similar to
shell scripting, Ansible utilizes the YAML programming
language to make scripts easy to run and read. Ansible allows
the front end interface to interact with the containers through
running simple scripts.

C. Front-End Interface

The front-end interface is responsible for user authentica-
tion and clean interfacing with the simulations. The front-end
interface satisfies the cloud accessibility requirements of the
testbed as it is hosted on the Cyber-Physical Systems Virtual
Organization (CPS-VO)* website. The CPS-VO is a virtual
organization from academia and industry with the goal of
growing the knowledge about cyber-physical systems. Fig 7
is a view of the visualization through the front-end interface.

*https://cps-vo.org/
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D. Communication Architecture and CPS-VO Interface

The main novelty of this UAV testbed is that it is cloud
enabled. This allows the user to design and test on any
platform from anywhere. The communication architecture
is responsible for satisfying the requirement of providing a
connection to the back-end interface through the CPS-VO.
While the back end can be accessed over ssh, ssh is not a
scalable secure form of access. It also adds a learning curve
to students who are new to Linux. To add security, scalability,
and simplicity, we are in the process of connecting the back-
end simulation with the CPS-VO interface.
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Fig. 7: The CPS-VO allows users to access the cloud-based
OpenUAV simulation stack after authenticating into the VO
website.

Fig 6 shows the communication between the back-end
OpenUAV server and the front-end interface. The communi-
cation occurs in two stages. First, there is communication
from a Docker container to the host machine, OpenUAV
server, running Ansible. Second, there is communication that
occurs from the host machine, OpenUAV server, to the CPS-
VO interface and back. To provide security, SSL encryption
is used with user authentication on the front end. The
simulation is controlled through a call to an Ansible script
by the VO interface. Visualization during the simulation is
sent back through Gzweb. Post simulation, ROSbags, which
are ROS logs, will be sent to the user for evaluation. Future
work will include adding tools similar to rviz and a shell in
the interface for debugging.

V. SYSTEM TESTING THROUGH CASE STUDIES

To test a simulation testbed, the important factors to
consider are computational load, user interface, simula-
tion limitations, and popular use cases. To evaluate the
effectiveness of OpenUAV meeting our requirements, we
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chose computationally demanding test scenarios, among the
many potential use cases for OpenUAV. Specifically, we
implemented a machine-learning based UAV navigation test
scenario and a multi-UAV swarm formation test scenario.
We chose these scenarios as they were more computationally
challenging, current research areas in our lab, and were more
likely to find flaws than a simple UAV task. In addition,
the multi-UAV test was done by a user not involved with
the OpenUAV simulator development, further showing its
usability.

Specifically, with the multi-UAV task, we were able to
determine how easy it is to setup and control multiple
UAV’s with our modified PX4 control. With the machine
learning task, we were able to test how effective Tensorboard
is as a cloud-enabled monitoring tool and the impacts of
machine learning on simulation responsiveness to the user.
We report on our observations from these two implemented
test scenarios using OpenUAV in the following section.

A. UAV Machine Learning Challenge

Due to machine learning’s growing popularity and appli-
cations, we wanted to test the simulation stack on a set
of machine learning tasks. We decided to focus on neural
networks specifically because they present unique challenges
that a simulator must be able to address, and we wanted to
explore performing a demanding machine learning task for
the simulator. In addition, we could leverage current work
on UAV navigation [15].

Machine learning is used for solving problems that may
not necessarily have a clear answer but have access to
training data [16]. There are many different machine learning
algorithms for solving different problems such as classifi-
cation or image segmentation. Neural networks specifically
are good at generalizing from training data for a diversity
of tasks [16]. The network used is a deepQ network, which
means the network is the Q-function in Q-learning. It takes
in some state and outputs Q values, or expected benefit, for
each of the potential actions. We are able to implement this
neural network through the TensorFlow [17] library.

The first challenge of neural networks is that they must
have a large set of training data. This means that the
simulator must run continuously for long periods of time.
The second challenge is that a diverse training set is needed
to generalize well. To create this training set, the environment
must change dynamically within each episode [18].

To examine machine learning-based UAV simulations un-
der different scenarios, we tested three different scenarios:
(1) a homing task where the agent was told where the target
is, (2) a visual servoing task where the agent had to home in
on an apriltag below it, and (3) an obstacle avoidance task
where the agent had to navigate a forest-like environment.
To set up a diverse environment in scenarios (1) and (2), the
target moved after each episode. In scenario (3), the network
was saved to switch to a new environment once it completed
one environment.

We were able to monitor the agents’ progress continuously



TensorBosrd x

/%

# Apps (G StUDent Central -

C | ® openuavseas.upenn.edus006/#scalar

D) NewTsb Mo c  StUDent

TensorBoard

Wiite a regex to create a tag group Episode_length

X
Number_of_collisions

[ show data download links

Number_of_successes._total

Ignore outlers in chart scaling

P
Tooltip sorting method: default erentage. ofauftopliot steps

Percentage_of_network_steps
smoothing Reward

& 0
02818 Reward

Horizontal Axis

SCALARS ~ IMAGES  AUDIO  GRAPHS  DISTRIBUTIONS  HISTOGRAMS  EMBEDDINGS  TEXT

c 0

Fig. 8: The Tensorboard browser interface from the obstacle avoidance simulation.

over the Internet via TensorBoard.* Tensorboard allows
constant live monitoring of learning statistics. In addition,
it allows users to view raw data and network structures.
Tensorboard is hosted inside the simulation container, and
gets data by reading from a continuously updated log file.
The main challenge of Tensorboard was to make sure it
was accessible from outside the container. We were able to
achieve this through a forwarded port to the host machine.
Figure 8 shows the Tensorboard browser interface from the
obstacle avoidance simulation.

Our focus was on creating an effective training simulator
and then a good policy for the task. We focused on what
was required of the simulator for machine learning. The
most important thing we found was the ability to reset upon
failure or success. On the simpler tasks, such as servoing,
only the target had to be reset. We found resetting on the
obstacle avoidance task to be much more challenging, in
part, because PX4 was not primarily designed to work in
simulated environments. The PX4 position estimator had no
way of being reset which caused a multirotor position reset
to the origin make the multirotor move aggressively towards
its old waypoint before the position estimator caught up with
the actual location. The position estimator uses a Kalman
filter [19], which, for a large value change, takes a series of
samples before it will shift to the correct value. We overcame
this by landing prior to a position reset, then waiting for
the position estimator to catch up with the actual location
before taking off. Task (1) was successfully learned to home
on a target. The visual servoing and obstacle avoidance tasks
needed more work on the learning side to perform well. A
video of the basic obstacle avoidance can be found here:
https://youtu.be/hQ5Pend41 VM. Future work is needed to
speed up the simulation beyond real time and early error
detection via continuous integration.

*https://www.tensorflow.org/get_started/summaries_and_tensorboard
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B. Multi-UAV Swarm Formations

The goal of the multi-UAV case study was to determine
how easy it is to setup and control multiple UAV’s with our
modified PX4 control. PX4 was not created to control mul-
tiple UAV’s. We modified PX4 to simulate multiple UAV’s,
each controlled independently. We chose a use case for plan
optimization with multiple UAVs. In this case, MATLAB
is used to synthesize a plan that brings n agents from an
arbitrary initial configuration to a so-called V-formation.
This formation has been proven to be energy efficient for
birds on long-distance flights. The vortex generated near
the wingtips of a bird offers an upwash benefit for the
other following birds but only given they avoid downwash
formed directly behind the bird as depicted in Figure 9.
The same principle has been exploited by aircraft for fuel
conservation on military flight missions. In [20], the authors
model bird-flocking behavior as a stochastic process and
propose an approximation algorithm for plan synthesis. The
approach combines model-predictive control with particle
swarm optimization to find a sequence of best actions at
each step.

clear view —
velocity matching -
upwash benefit —

T
downwash

Fig. 9: Optimal positions in V-formation: clear view, velocity
matching, and upwash benefit for each bird, except for the
leader of the flock which does not receive the upwash benefit.

Field experiments with Crazyflie 2.0 Nano Quadcopters*

*https://www.bitcraze.io/crazyflie-2/



using Vicon Motion Capture System™ highlighted that testing
of the planning algorithms for the drone swarms has to be
performed in a simulation environment prior to deployment
due to the challenges posed by the real-world environment,
as well as sensor and actuator noises. However, achieving
a formation of drones requires emulating the dynamics as
close as possible to reality to identify the risks of collisions
or interferences between multiple UAVs.

We chose V-formation for the multirotors as planning of
the close formation flights for them should be downwash-
aware as well as for winged vehicles. The MATLAB com-
putations were performed offline and passed to the low-
level controller as a set of waypoints. The current state
of the art relied heavily on the environmental conditions
and smoothness of the trajectories, which limited the ex-
periments to three drones and wide formations. In contrast,
OpenUAV allowed us to simulate larger flocks and study the
performance of the algorithm on more challenging starting
configurations.

Experiments in [20] were executed using a MATLAB
setup that produced a sequence of matrices as an optimal
plan. Each matrix consists of positions for each agent at each
step of the plan. Such matrices can be fairly easily passed
to an OpenUAV controller in Python and serve as waypoints
for the drones. Based on a given set of points the multi-
UAV control further computes accelerations for all robots
to follow the plan. To use the OpenUAV stack, we wrote a
node that subscribes to a multi-UAV pose array published by
the Matlab code. Then, the OpenUAV ROS node publishes
the desired position and yaw (set as a fixed value) to the
PX4 position controller on each UAV. The simulation can be
monitored during a mission on Gzweb (Figure 10), and a
rosbag file can be collected afterwards for analysis. Naturally,
since aerodynamic considerations are not addressed in the
OpenUAV stack, it serves as a way for testing and debugging
the system before actual field trials.

Visualizing a realistic course of events in case the drones
are at risk of colliding, the OpenUAV simulator helps detect
collisions that can be caused by close formations, which may
not appear risky in offline Matlab calculations. Additionally,
injecting stochastic external noise as an attack on each robot
allows to play controller-attacker games, where the control
input is to be synthesized online as the best response to
attacks on-the-fly [21]. Future computations will be done
in C++ to enable direct publishing to the PX4 position
controller. Moreover, it is planned to introduce the downwash
generated by each UAV into the simulation model to study
its effect on the optimal solutions.

VI. ANALYSIS OF CASE STUDY RESULTS

In this section, we report on our observations of lessons
learned from the two case studies of OpenUAV testing.

In the machine learning tasks, we found that overall
OpenUAV worked effectively to simulate and train a UAV
on machine learning tasks. The main roadblocks to machine

*https://www.vicon.com/motion-capture/engineering
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Fig. 10: Screenshot showing a simplified 2D visualization
(top), as well as Gzweb view of four UAVs in formation on
the OpenUAV simulator.

learning for UAVs that we experienced were the difficulty
with resetting the UAV and the time required to train. While
it is possible to circumvent PX4’s limitations with positional
reset, time requirements are harder to fix. We found that
speeding up the simulation caused erratic behavior, rendering
speedup useless.

In the multi-UAV task, we found that OpenUAV was able
to use more challenging initial multirotor configurations and
simulate on larger flocks than previous approaches. Since
the multi-UAV computation was in MATLAB, we were able
to test its ability to integrate with OpenUAV. The main
limitation to MATLAB was that it is proprietary software,
which has two ramifications: (1) We could not integrate
it onto the simulation server. (2) The user has to feed
the data in or communicate it from their local machine.
For the purpose of testing, we chose to feed the data in
post calculation. We also found that while the simulation
ran smooth, visualization over Gzweb for more than one
multirotor was lagged, because Gzweb renders the simulation
on the user’s machine. Future work to simplify the multirotor
model or visualize through RobotWebTools could help speed
up visualization for multi-UAV swarms.

Both case studies demonstrated that OpenUAV can serve
as an effective testbed for UAV simulation. While the case
studies were effective on the testbed, both lacked a simple
user interface because the communication to the front-end
interface was under development. The users had to connect
through ssh while also viewing Gzweb, and Tensorboard on



separate urls. Despite this, users connected remotely, little
installation was required, and no local computer requirements
for the remote user were necessary for the tests. In addition,
multiple simulations could run simultaneously with no inter-
ference.

VII. LOAD TESTING FOR MULTIPLE USERS

In order for OpenUAV to be used for education, it must
support multiple users simultaneously. The current hardware
setup for OpenUAV is a simulator server setup with a 32
core Xeon CPU, with 64 GB DDR3 RAM, and 2 Titan X
GPU’s. Each user simulation is in its own container and for
testing we had UAV’s flying in patterns running basic vision
algorithms from their onboard cameras. We found that each
individual container can efficiently handle up to 6 UAV’s and
the whole system can handle 30 UAV’s with no cameras and
9 with camera’s. For future work, we would like to move
OpenUAV to a scalable cloud computing solution so as to
handle more users and UAV’s.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented OpenUAYV, the first cloud-
enabled, open source simulation testbed for UAV research
and education. Based on open source software, we offer this
simulator free for public use towards reducing the cost of
research and education, and to promote further development
of the simulator. By being cloud enabled, we have lowered
the barrier to entry to UAV development and research by
not requiring specific hardware or complicated setup. By
using Docker and Ansible, we have made the simulation
deployable and workflow automated, for a potential push
to a cloud computing service. We have also demonstrated
effective use of this testbed for computationally challenging
machine learning and multi-UAV simulations successfully
including testing done by a user not involved with devel-
opment.

Future work will focus on implementing the designed
connection between the testbed and the front-end interface,
so as to even further reduce the barrier to entry and to provide
cleaner authentication to the system. In addition, we seek
to expand the basic testbed to encompass more multirotor
platforms and environments for a variety of potential tasks.
Finally, we plan to take advantage of Ansible to incorporate
continuous integration into the system.
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