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Abstract. Motivated by the problem of verifying the correctness of
arrhythmia-detection algorithms, we present a formalization of these
algorithms in the language of Quantitative Regular Expressions. QREs
are a flexible formal language for specifying complex numerical queries
over data streams, with provable runtime and memory consumption
guarantees. The medical-device algorithms of interest include peak detec-
tion (where a peak in a cardiac signal indicates a heartbeat) and various
discriminators, each of which uses a feature of the cardiac signal to dis-
tinguish fatal from non-fatal arrhythmias. Expressing these algorithms’
desired output in current temporal logics, and implementing them via
monitor synthesis, is cumbersome, error-prone, computationally expen-
sive, and sometimes infeasible.

In contrast, we show that a range of peak detectors (in both the time
and wavelet domains) and various discriminators at the heart of today’s
arrhythmia-detection devices are easily expressible in QREs. The fact
that one formalism (QREs) is used to describe the desired end-to-end
operation of an arrhythmia detector opens the way to formal analysis
and rigorous testing of these detectors’ correctness and performance.
Such analysis could alleviate the regulatory burden on device developers
when modifying their algorithms. The performance of the peak-detection
QREs is demonstrated by running them on real patient data, on which
they yield results on par with those provided by a cardiologist.

Keywords: Peak Detection · Electrocardiograms · Arrythmia discrim-
ination · ICDs · Quantitative Regular Expressions

1 Introduction

Medical devices blend signal processing (SP) algorithms with decision algorithms
such that the performance and correctness of the latter critically depends on
that of the former. As such, analyzing a device’s decision making in isolation
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Fig. 1. Rectified EGM during normal rhythm (left) and its CWT spectrogram (right)

of SP offers at best an incomplete picture of the device’s overall behavior. For
example, an Implantable Cardioverter Defibrillator (ICD) will first perform Peak
Detection (PD) on its input voltage signal, also known as an electrogram (see
Fig. 1). The output of PD is a timed boolean signal where a 1 indicates a peak
(local extremum) produced by a heartbeat, which is used by the downstream
discrimination algorithms to differentiate between fatal and non-fatal rhythms.
Over-sensing (too many false peaks detected) and under-sensing (too many true
peaks missed) can be responsible for as much as 10% of an ICD’s erroneous
decisions [23], as they lead to inaccuracies in estimating the heart rate and in
calculating important timing relations between the beats of the heart’s chambers.

Motivated by the desire to verify ICD algorithms for cardiac arrhythmia dis-
crimination, we seek a unified formalism for expressing and analysing the PD and
discrimination tasks commonly found in ICD algorithms. A common approach
would be to view these tasks as one of checking that the cardiac signal satisfies
certain requirements, express these requirements in temporal logic, and obtain
the algorithms by monitor synthesis. For example, PD evaluates to 1 if the sig-
nal (in an observation window) contains a peak, while the V-Rate discriminator
evaluates to 1 if the average heart rate exceeds a certain threshold.

As discussed in Sect. 2, however, this approach quickly leads to a fracturing
of the formalisms: PD algorithms and the various discriminators require different
logics, and some simply cannot be expressed succinctly (if at all) in any logic
available today. Thus, despite the increasingly sophisticated variety of temporal
logics that have appeared in the literature [6,11], they are inadequate for express-
ing the operations of PD and discrimination succinctly. It should be noted that
PD is an extremely common signal-processing primitive used in many domains,
and forms of discrimination appear in several cardiac devices besides ICDs, such
as Implantable Loop Recorders and pacemakers. Thus the observed limitations
of temporal logics extend beyond just ICD algorithms.

PD and discrimination both require reasoning, and performing a wide range
of numerical operations, over data streams, where the data stream is the
incoming cardiac electrogram observed in real-time. For example, a commer-
cial peak detector (demonstrated in Sect. 6) defines a peak as a value that
exceeds a certain time-varying threshold, and the threshold is periodically re-
initialized as a percentage of the previous peak’s value. As another example,
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the Onset discriminator compares the average heart rate in two successive win-
dows of fixed size. Thus, the desired formalism must enable value storage, time
freezing, various arithmetic operations, and nested computations, while remain-
ing legible and succinct, and enabling compilation into efficient implementations.

We therefore propose the use of Quantitative Regular Expressions (QREs) to
describe (three different) peak detectors and a common subset of discriminators.
QREs, described in Sect. 4, are a declarative formal language based on classical
regular expressions for specifying complex numerical queries on data streams [1].
QREs’ ability to interleave user-defined computation at any nesting level of the
underlying regular expression gives them significant expressiveness. (Formally,
QREs are equivalent to the streaming composition of regular functions [2]).
QREs can also be compiled into runtime- and memory-efficient implementations,
which is an important consideration for implanted medical devices.

To demonstrate the versatility and suitability of QREs for our task, we focus
on PD in the rest of the paper, since it is a more involved than any single dis-
criminator. Three different peak detectors are considered (Sect. 3): 1. detector
WPM, which operates in the wavelet domain, 2. detector WPB, our own mod-
ification of WPM that sacrifices accuracy for runtime, and 3. detector MDT,
which operates in the time domain, and is implemented in an ICD on the mar-
ket today. For all three, a QRE description is derived (Sect. 5). The detectors’
operations is illustrated by running them on real patient electrograms (Sect. 6).

In summary, our contributions are:

– We show that a common set of discriminators is easily encoded as QREs, and
compare the QREs to their encoding in various temporal logics.

– We present two peak detectors based on a general wavelet-based characteri-
zation of peaks.

– We show that the wavelet-based peak detectors, along with a commercial
time-domain peak detector found in current ICDs, are easily and clearly
expressible in QREs.

– We implement the QREs for peak detection and demonstrate their capabilities
on real patient data.

2 Challenges in Formalizing ICD Discrimination
and Peak Detection

This section demonstrates the difficulties that arise when using temporal logic to
express the discrimination and peak-detection tasks common to all arrhythmia-
detection algorithms. Specifically: different discriminators require the use of dif-
ferent logics, whose expressive powers are not always comparable; the formulas
quickly become unwieldy and error-prone; and the complexity of the monitor-
synthesis algorithm, when it is available, rapidly increases due to nesting of freeze
quantification. On the other hand, it will be shown that QREs are well-suited
to these challenges: all tasks are expressible in the QRE formalism, the result-
ing expressions are simple direct encodings of the tasks, and their monitors are
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efficient. The syntax and semantics of the logics will be introduced informally as
they are outside the scope of this paper.

An ICD discriminator takes in a finite discrete-timed signal w : {0, . . . , T} →
D. (Signal w will also sometimes be treated as a finite string in D∗ without
causing confusion). The discriminator processes the signal w in a sliding-window
fashion. When the window is centered at time instant t, the discriminator com-
putes some feature of the signal (e.g., the average heart rate) and uses this
feature to determine if the rhythm displays a potentially fatal arrhythmia in the
current window (at time t). The ICD’s overall Fatal vs Non-Fatal decision is
made by combining the decisions from all discriminators.

In what follows, several discriminators that are found in the devices of major
ICD manufacturers are described. Then for each discriminator, after discussing
the challenges that arise in specifying the discriminator in temporal logic, a
QRE is given that directly implements the discriminator. This will also serve
as a soft introduction to QRE syntax. Fix a data domain D and a cost domain
C. For now, we simplify things by viewing a QRE f as a regular expression r
along with a way to assign costs to strings w ∈ D∗. If the string w matches the
regular expression r, then the QRE maps it to f(w) ∈ C. If the string does not
match, it is mapped to the undefined value ⊥. The QRE’s computations can use
a fixed but arbitrary set of operations (e.g., addition, max, or insertion into a
set). Operations can be thought of as arbitrary pieces of code.

The first example of discriminator checks whether the number of heartbeats
in a one-minute time interval is between 120 and 150. This requires the use of
a counting modality like that used in CTMTL [16]. If p denotes a heartbeat,
then the following CTMTL formula evaluates to true exactly when the number
of heartbeats lies in the desired range: C≥120

[0,59]p ∧ C≤150
[0,59]p.

This is equally easily expressed as a QRE: match 60 signal samples (at a 1 Hz
sampling rate), and at every sample where p is true (this is a heartbeat), add 1
to the cost, otherwise add 0. Finally, check if the sum is in the range:

inrange(iter60−add(p?1 else 0))

The second discriminator determines whether the heart rate increases by at
least 20% when measured over consecutive and disjoint windows of 4 beats. In
logic, this requires explicit clocks, such as those used in Explicit Clock Temporal
Logic XCTL [14], since the beat-to-beat delay is variable. So let T denote the
time state (which keeps track of time) and let the xi’s be rigid clock variables
that store the times at which p becomes true. The following XCTL formula
expresses the desired discriminator:

�(p ∧ (x1 = T ) ∧ ♦(p ∧ . . . ♦(p ∧ (x9 = T ) ∧ [(x5 − x1) · 0.8 ≥ x9 − x5]) . . .))

Note the need to explicitly mark the 9 heartbeats and nest the setting of clock
variables 9-deep. This computation can be described in a QRE in a simpler, more
concise manner. Just like the usual regular expressions, simpler QREs can be
combined into more complex ones. We will now use the split−op combinator (see
Fig. 2): given the input string w = w1w2 which is a concatenation of strings w1
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and w2, and QREs f, g, split−op(f, g) maps w to the cost value op(f(w1), g(w2)),
where op is some operator (e.g., averaging). So let QRE fourBeats match four
consecutive beats in the boolean signal w and let it compute the average cycle
length of these 4 beats. Let inc(x, y) be an operation that returns True whenever
0.8x ≥ y. Then QRE suddenOnset does the job:

suddenOnset := split−inc(fourBeats, fourBeats)
fourBeats := iter4−avg(intervalLength)

intervalLength := split−left(countzeros, 1) // left(a, b) returns a

The third discriminator takes in a three-vaued signal w : N → {0, A, V }
where a 0 indicates no beat, an A indicates an atrial beat, and a V indicates
a ventricular beat. One simplified version of this discriminator detects whether
this pattern occurs in the current window: V 0a:bA0c:dV 0e:fA0g:hV . Here, a and
b are integers, and 0a:b indicates between a and b repetitions of 0. This can be
expressed in discrete-time Metric Temporal Logic [15]. E.g. the prefix V 0a:bA
can be written as w = V =⇒ X((w = 0)U[a+1,b](w = A)). And so on. This
quickly becomes unwieldy as the pattern itself becomes lengthier and with more
restrictions on the timing of the repetitions. On the other hand, this is trivially
expressed as a (quantitative) regular expression.

Our final example comes from Peak Detection (PD), which takes in a real-
valued signal v : N → R≥0. For one component of this PD, the objective is to
detect when v(t) exceeds a threshold value h > 0 which is reset as a function of
the previous peak value. Thus the logic must remember the value of that peak.
This necessitates freeze quantification of state variables, as used in Constraint
LTL with Freeze Quantification CLTL↓ [10] (↓z = v means that we freeze the
variable z to the value of v):

�(v > h =⇒ ↓BL=1 ♦ (ϕlocal-max =⇒ h = 0.8z2))
ϕlocal-max :=↓z1 = v X(↓z2 = v X(z2 > z1 ∧ z2 > v))

The nesting of freeze quantifiers increases the chances of making errors when
writing the specification and decreases its legibility. More generally, monitoring
of nested freeze quantifiers complicates the monitors significantly and increases
their runtimes. E.g., in [6] the authors show that the monitoring algorithm for
STL with nested freeze quantifiers is exponential in the number of the nested
freeze operators in the formula. This becomes more significant when dealing
with the full PD, of which the above is one piece. On the other hand, we have
implemented an even more complex PD as a QRE (Sect. 5.1).

The reader will recognize that the operations performed in these tasks are
quite common, like averaging, variability, and state-dependent resetting of val-
ues, and can conceivably be used in numerous other applications.

This variety of logics required for these tasks, all of which are fundamental
building blocks of ICD operation, means that a temporal logic-based approach to
the problem is unlikely to yield a unifying view, whereas QREs clearly do. In the
rest of the paper, the focus is placed on peak detection, as it is more complicated
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than discrimination, and offers a strong argument for the versatility and power
of QREs in medical-device algorithms.

3 Peaks in the Wavelet Domain

Rather than confine ourselves to one particular peak detector, we first describe a
general definition of peaks, following the classical work of Mallat and Huang [18].
Then two peak detectors based on this definition are presented. In Sect. 6, a third,
commercially available, peak detector is also implemented.

3.1 Wavelet Representations

This definition operates in the wavelet domain, so a brief overview of wavelets
is now provided. Readers familiar with wavelets may choose to skip this section.
Formally, let {Ψs}s>0 be a family of functions, called wavelets, which are obtained
by scaling and dilating a so-called mother wavelet ψ(t): Ψs(t) = 1√

s
ψ

(
t
s

)
. The

wavelet transform Wx of signal x : R+ → R is the two-parameter function:

Wx(s, t) =

+∞∫

−∞
x(τ)Ψs(τ − t) dτ (1)

An appropriate choice of ψ for peak detection is the nth derivative of a Gaussian,
that is: ψ(t) = dn

dtn Gμ,σ(t). Equation (1) is known as a Continuous Wavelet
Transform (CWT), and Wx(s, t) is known as the wavelet coefficient.

Parameter s in the wavelet ψs is known as the scale of the analysis. It can be
thought of as the analogue of frequency for Fourier analysis. A smaller value of
s (in particular s < 1) compresses the mother wavelet as can be seen from the
definition of Ψs, so that only values close to x(t) influence the value of Wx(s, t)
(see Eq. (1)). Thus, at smaller scales, the wavelet coefficient Wx(s, t) captures
local variations of x around t, and these can be thought of as being the higher-
frequency variations, i.e., variations that occur over a small amount of time. At
larger scales (in particular s > 1), the mother wavelet is dilated, so that Wx(s, t)
is affected by values of x far from t as well. Thus, at larger scales, the wavelet
coefficient captures variations of x over large periods of time.

Figure 1 shows a Normal Sinus Rhythm EGM and its CWT |Wx(s, t)|. The
latter plot is known as a spectrogram. Time t runs along the x-axis and scale s
runs along the y-axis. Brighter colors indicate larger values of coefficient magni-
tudes |Wx(s, t)|. It is possible to see that early in the signal, mid- to low-frequency
content is present (bright colors mid- to top of spectrogram), followed by higher-
frequency variation (brighter colors at smaller scales), and near the end of the
signal, two frequencies are present: mid-range frequencies (the bright colors near
the middle of the spectrogram), and very fast, low amplitude oscillations (the
light blue near the bottom-right of the spectrogram).
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3.2 Wavelet Characterization of Peaks

Consider the signal and its CWT spectrogram |Wx(s, t)| shown in Fig. 1. The
coefficient magnitude |Wx(s, t)| is a measure of signal power at (s, t). At larger
scales, one obtains an analysis of the low-frequency variations of the signal,
which are unlikely to be peaks, as the latter are characterized by a rapid change
in signal value. At smaller scales, one obtains an analysis of high-frequency
components of the signal, which will include both peaks and noise. These remarks
can be put on solid mathematical footing [19, Chap. 6]. Therefore, for peak
detection one must start by querying CWT coefficients that occur at
an appropriately chosen scale s̄.

Given the fixed scale s̄, the resulting |Wx(s̄, t)| is a function of time. The
next task is to find the local maxima of |Wx(s̄, t)| as t varies. The times when
local maxima occur are precisely the times when the energy of scale-s̄ varia-
tions is locally concentrated. Thus peak characterization further requires
querying the local maxima at s̄.

Not all maxima are equally interesting; rather, only those with value above
a threshold, since these are indicative of signal variations with large energy
concentrated at s̄. Therefore, the specification only considers those local
maxima with A value above a threshold p̄.

Maxima in the wavelet spectrogram are not isolated: as shown in
[19, Theorem 6.6], when the wavelet ψ is the nth derivative of a Gaussian, the
maxima belong to connected curves s 	→ γ(s) that are never interrupted as the
scale decreases to 0. These maxima lines can be clearly seen in Fig. 1 as being
the vertical lines of brighter color extending all the way to the bottom. Multiple
maxima lines may converge to the same point (0, tc) in the spectrogram as s → 0.
A celebrated result of Mallat and Hwang [18] shows that singularities in the sig-
nal always occur at the convergence times tc. For our purposes, a singularity is
a time when the signal undergoes an abrupt change (specifically, the signal is
poorly approximated by an (n + 1)th-degree polynomial at that change-point).
These convergence times are then the peak times that we seek.

Although theoretically, the maxima lines are connected, in practice, signal
discretization and numerical errors will cause some interruptions. Therefore,
rather than require that the maxima lines be connected, we only require them
to be (ε, δ)-connected. Given ε, δ > 0, an (ε, δ)-connected curve γ(s) is one such
that for any s in its domain, |s − s′| < ε =⇒ |γ(s) − γ(s′)| < δ.

A succinct description of this Wavelet Peaks with Maxima (WPM) is then:

• (Characterization WPM ) Given positive reals s̄, p̄, ε, δ > 0, a peak is said
to occur at time t0 if there exists a (ε, δ)-connected curve s 	→ γ(s) in the
(s, t)-plane such that γ(0) = t0, |Wx(s, γ(s))| is a local maximum along the
t-axis for every s in [0, s̄], and |Wx(s̄, γ(s̄))| ≥ p̄.

The choice of values s̄, ε, δ and p̄ depends on prior knowledge of the class of
signals we are interested in. Such choices are pervasive and unavoidable in signal
processing, as they reflect application domain knowledge. Such a specification
is difficult, if not impossible, to express in temporal and time-frequency logics.



30 H. Abbas et al.

In the next section we show how WPM can be formalized using Quantitative
Regular Expressions.

3.3 Blanking Characterization

For comparison, we modify WPM to obtain a peak characterization that is com-
putationally cheaper but suffers some imprecision in peak-detection times. We
call it Wavelet Peaks with Blanking (WPB). It says that one peak at the most
can occur in a time window of size BL samples.

• (Characterization WPB) Given positive reals s̄, p̄ > 0, a peak is said to occur
at time t0 if |Wx(s̄, t0)| is a local maximum along t and |Wx(s̄, t0)| > p̄, and
there is no peak occurring anywhere in (t0, t0 + BL].

Section 6 compares WPM and WPB on patient electrograms.

4 A QRE Primer

An examination of discrimination and PD (Sects. 2 and 3) shows the need for a
language that: (1) Allows a rich set of numerical operations. (2) Allows matching
of complex patterns in the signal, to select scales and frequencies at which inter-
esting structures exist. (3) Supports the synthesis of time- and memory-efficient
implementations. This led to the consideration of Quantitative Regular Expres-
sions (QREs). A QRE is a symbolic regular expression over a data domain D,
augmented with data costs from some cost domain C. A QRE views the signal
as a stream w ∈ D∗ that comes in one data item at a time. As the Regular
Expression (RE) matches the input stream, the cost of the QRE is evaluated.

Formally, consider a set of types T = {T1, T2, . . . , Tk}, a data domain D ∈T ,
a cost domain C ∈T , and a parameter set X = (x1, x2, . . ., xk), where each xi is
of type Ti. Then a QRE f is a function

[[f ]]: D∗ → (T1 × T2 × . . . ×Tk → C)∪ {⊥}

where ⊥ is the undefined value. Intuitively, if the input string w ∈ D∗ does
not match the RE of f , then [[f ]](w) = ⊥. Else, [[f ]](w) is a function from
T1 ×T2 × . . . ×Tk to C. When a parameter valuation v̄ ∈ T1 × . . . ×Tk is given,
this then further evaluates to a cost value in C, namely [[f ]](w)(v̄). Figure 2
provides an overview of QREs and their combinators.

QREs can be compiled into efficient evaluators that process each data item
in time (or memory) polynomial in the size of the QRE and proportional to
the maximum time (or memory) needed to perform an operation on a set of cost
terms, such as addition, least-squares, etc. The operations are selected from a set
of operations defined by the user. It is important to be aware that the choice of
operations constitutes a trade-off between expressiveness (what can be computed)
and complexity (more complicated operations cost more). See [1] for restrictions
placed on the predicates and the symbolic regular expressions.



Quantitative Regular Expressions for Arrhythmia Detection Algorithms 31

Fig. 2. QREs and their combinators. (a) Basic QRE ϕ?λ matches one data item d
and evaluates to λ(d) if ϕ(d) is True. (b) QRE op(f1, . . . , fk) evaluates the k QREs
f1, . . . , fk on the same stream w and combines their outputs using operation op (e.g.,
addition). fi outputs a value of type Ti. (c) QRE f else g evaluates to f if f matches
the input stream; else it evaluates to g. (d) QRE split−op(f, g) splits its input stream in
two and evaluates f on the prefix and g on the suffix; the two results are then combined
using operation op. (e) QRE iter[p〉(f) iteratively applies f on substreams that match
it, analogously to the Kleene-∗ operation for REs. Results are passed between iterations
using parameter p. (f) QRE f � g feeds the output of QRE f into QRE g as f is being
computed.

The declarative nature of QREs will be important when writing complex
algorithms, without having to explicitly maintain state and low-level data flows.
But as with any new language, QREs require some care in their usage. Space
limitations preclude us from giving the formal definition of QREs. Instead, we
will describe what each QRE does in the context of peak detection to give the
reader a good idea of their ease of use and capabilities. Figure 2 illustrates how



32 H. Abbas et al.

QREs are defined and what they compute. Readers familiar with QREs will
notice that, when writing the QRE expressions, we occasionally sacrifice strict
syntactic correctness for the sake of presentation clarity.

5 QRE Implementation of Peak Detectors

We now describe the QREs that implement peak detectors WPM and WPB
of Sect. 3.2. It is emphasized that even complicated procedures such as these
two algorithms can be described in a declarative fashion using QREs, without
resorting to a programming language or explicitly storing state, etc.

Fig. 3. QRE peakWPM

5.1 QRE for WPM

A numerical implementation of a CWT returns a discrete set of coefficients. Let
s1 < s2 < . . . < sn be the analysis scales and let t1, t2, . . . be the signal sampling
times. Recall that a QRE views its input as a stream of incoming data items. A
data item for WPM is d = (si, tj , |Wx(si, tj)|) ∈ D := (R+)3. We use d.s to refer
to the first component of d, and d.|Wx(s, t)| to refers to its last component. The
input stream w ∈ D∗ is defined by the values from the spectrogram organized
in a column-by-column fashion starting from the highest scale:

w = (sn, t1, |Wx(sn, t1)|), . . . , (s1, t1, |Wx(s1, t1)|)︸ ︷︷ ︸
wt1

. . .

. . . (sn, tm, |Wx(sn, tm)|), . . . , (s1, tm, |Wx(s1, tm)|)
︸ ︷︷ ︸

wtm
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Let sσ, 1 ≤ σ ≤ n, the the scale that equals s̄. Since the scales si > sσ are not
relevant for peak detection (their frequency is too low), they should be discarded
from w. Now, for each scale si, i ≤ σ, we would like to find those local maxima
of |Wx(si, ·)| that are larger than threshold pi

1. We build the QRE peakWPM
bottom-up as follows. In what follows, i = 1, . . . , σ. See Fig. 3.

• QRE selectCoefi selects the wavelet coefficient magnitude at scale si from the
incoming spectrogram column wt. It must first wait for the entire column to
arrive in a streaming fashion, so it matches n data items (recall there are n
items in a column – see Fig. 3) and returns as cost d.|Wx(si, t)|.

selectCoefi := (dndn−1 . . . d1? di.|Wx(si, t)|).

• QRE repeatSelectCoefi applies selectCoefi to the latest column wt. To do so,
it splits its input stream in two: it executes selectCoefi on the last column,
and ignores all columns that preceded it using (dn)∗. It returns the selected
coefficient |Wx(si, t)| from the last column.

repeatSelectCoefi := split−right((dn)∗, selectCoefi)

Combinator split−right returns the result of operating on the right-hand side
of the split, i.e. the suffix.

• QRE localMaxi matches a string of real numbers of length at least 3:
r1...rk−2rk−1rk. It returns the value of rk−1 if it is larger than rk and rk−2,
and is above some pre-defined threshold pi; otherwise, it returns 0. This will
be used to detect local maxima in the spectrogram in a moving-window fash-
ion. In detail:

localMaxi := split−right(R∗?0, LM3) (2)

localMaxi splits the input string in two: the prefix is matched by R
∗ and is

ignored. The suffix is matched by QRE LM3: LM3 matches a length-three
string and simply returns 1 if the middle value is a local maximum that is
above pi, and returns zero, otherwise.

• QRE oneMaxi feeds outputs of QRE repeatSelectCoefi to the QRE localMaxi.

oneMaxi := repeatSelectCoefi � localMaxi

Thus, oneMaxi “sees” a string of coefficient magnitudes |Wx(si, t1)|,
|Wx(si, t2)|, . . . generated by (streaming) repeatSelectCoefi, and produces a
1 at the times of local maxima in this string.

• QRE peakTimesi collects the times of local maxima at scale si into one set.

peakTimesi := oneMaxi � unionTimes

It does so by passing the string of 1s and 0s produced by oneMaxi to
unionTimes. The latter counts the number of 0s separating the 1s and puts
that in a set Mi. Therefore, after k columns wt have been seen, set Mi

contains all local maxima at scale si which are above pi in those k columns.
1 pσ = p̄, pi<σ = 0, since we threshold only the spectrogram values at scale s̄. After

this initial thresholding, tracing of maxima lines returns the peaks.
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• QRE peakWPM is the final QRE. It combines results obtained from scales sσ

down to s1:

peakWPM := connδ(peakTimesσ, ..., peakTimes1)

Operator connδ
2 checks if the local maxima times for each scale (produced

by peakTimesi) are within a δ of the maxima at the previous scale.

In summary, the complete QRE is given top-down by:

peakWPM := connδ(peakTimesσ, ..., peakTimes1)
peakTimesi := oneMaxi � unionTimes

oneMaxi := repeatSelectCoefi � localMaxi

localMaxi := split−right(R∗?0, LM3)
repeatSelectCoefi := split−right((dn)∗, selectCoefi)

selectCoefi := (dn . . . d1? d.|Wx(si, t)|)

5.2 QRE Implementation of WPB

Peak characterization WPB of Sect. 3.2 is implemented as QRE peakWPB. See
Fig. 4. The input data stream is the same as before.

• QRE oneMaxσ (defined as before) produces a string of 1s and 0s, with the 1s
indicating local maxima at scale s̄ = sσ.

• QRE oneBL matches one blanking duration, starting with the maximum that
initiates it. Namely, it matches a maximum (indicated by a 1), followed by a
blanking period of length BL samples, followed by any-length string without
maxima (indicated by 0∗): oneBL := (1 · (0|1)BL · 0∗)

Wx(sσ, t2)Wx(sσ, t1) Wx(sσ, t3) Wx(sσ, tk+1) Wx(sσ, tk)
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Wx(sσ, tk+1)

Wx(sσ, tk−1)

10oneMaxσ 10 0

1latestPeak 1

1
BLANKING PERIOD

0
BLANKING PERIOD

Fig. 4. QRE peakWPB

2 Operator connδ can be defined recursively as follows: connδ(X, Y ) = {y ∈ Y : ∃x ∈
X : |x − y| ≤ δ}, connδ(Xk, .., X1) = connδ(connδ(Xk, .., X2), X1).
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• QRE latestPeak will return a 1 at the time of the latest peak in the input
signal: latestPeak = split−right(oneBL∗?0, 1?1). It does so by matching all
the blanking periods up to this point using oneBL∗ and ignoring them. It then
matches the maximum (indicated by 1) at the end of the signal.

• QRE peakWPB feeds the string of 1s and 0s produced by oneMaxσ to the
QRE latestPeak: peakWPB = oneMaxσ � latestPeak

6 Experimental Results

We show the results of running peak detectors peakWPM and peakWPB on real
patient data, obtained from a dataset of intra-cardiac electrograms. We also
specified a peak detector available in a commercial ICD [22] as QRE peakMDT,
and show the results for comparison purposes. The implementation uses an early
version of the StreamQRE Java library [20]. Comparing the runtime and memory
consumption of different algorithms (including algorithms programmed in QRE)
in a consistent and reliable manner requires running a compiled version of the
program on a particular hardware platform. No such compiler is available at the
moment, so we don’t report such performance numbers.

The results in this section should not be interpreted as definitively establish-
ing the superiority of one peak detector over another, as this is not this paper’s
objective. Rather, the objective is to highlight the challenges involved in peak
detection for cardiac signals, an essential signal-processing task in many medical
devices. In particular, by highlighting how different detectors perform on differ-
ent signals, it establishes the need for a formal (and empirical) understanding of
their operation on classes of arrhythmias. This prompts the adoption of a formal
description of peak detectors for further joint analysis with discrimination.
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Fig. 5. peakWPM-detected peaks (red circles) and peakWPB-detected peaks (black
circles) on a VT rhythm (Color figure online).

Figure 5 presents one rectified EGM signal of a Ventricular Tachycardia (VT)
recorded from a patient. Circles (indicating detected time of peak) show the
result of running peakWPM (red circles) and peakWPB (black circles). These
results were obtained for s̄ = 80, BL = 150, and different values of p̄. The first
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setting of p̄ (Fig. 5 (a)) for both QREs was chosen to yield the best performance.
This is akin to the way cardiologists set the parameters of commercial ICDs:
they observe the signal, then set the parameters. We refer to this as the nominal
setting. Ground-truth is obtained by having a cardiologist examine the signal
and annotate the true peaks.

We first observe that the peaks detected by peakWPM match the ground-
truth; i.e., the nominal performance of peakWPM yields perfect detection. This
is not the case with peakWPB. Next, one can notice that the time precision of
detected peaks with peakWPM is higher than with peakWPB due to maxima
lines tracing down to the zero scale. Note also that the results of peakWPM are
stable for various parameters settings. Improper thresholds p̄ or scales s̄ degrade
the results only slightly (compare locations of red circles on Fig. 5 (a) with Fig. 5
(b)). By contrast, peakWPB detects additional false peaks (compare black circles
in Figs. 5 (a) and (b)).
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Fig. 6. WPM and peakMDT running on a VF rhythm (left) and peakMDT running on
an NSR rhythm (right) (Color figure online).

Figure 6 (left) shows WPM (red circles) running on a Ventricular Fibrillation
(VF) rhythm, which is a potentially fatal disorganized rhythm. Again, we note
that WPM finds the peaks.

Detector MDT works almost perfectly with nominal parameters settings on
any Normal Sinus Rhythm (NSR) signal (see Fig. 6 right). NSR is the “normal”
heart rhythm. The detected peak times are slightly early because peakMDT
declares a peak when the signal exceeds a time-varying threshold, rather than
when it reaches its maximum. Using the same nominal parameters on more
disorganized EGM signals with higher variability in amplitude, such as VF,
does not produce proper results; see the black circles in Fig. 6 left.

7 Related Work

Signal Temporal Logic (STL) [17] was designed for the specification of tem-
poral, real-time properties over real-valued signals and has been used in many
applications including the differentiation of medical signals [4,7]. In [6], STL
was augmented with a signal value freeze operator that allows one to express
oscillatory patterns, but it is not possible to use it to discriminate oscillations
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within a particular frequency range. The spectrogram of a signal can be repre-
sented as a 2D map (from time and scale to amplitude) and one may think to
employ a spatial-temporal logic such as SpaTeL [13] or Signal Spatio-Temporal
Logic (SSTL) [21] on spectrograms. However, both of their underlying spatial
models, graph structures for SSTL and quadtrees for SpaTeL, are not appro-
priate for this purpose. Logics for describing frequency and temporal properties
have been proposed, including Time-Frequency Logic (TFL) in [11] and the app-
roach in [8]. TFL is not sufficiently expressive for peak detection because it lacks
the necessary mechanisms to quantify over variables or to freeze their values.
Timed regular expressions [3,24,25] extend regular expressions by clocks and
are expressively equivalent to timed automata, but cannot express the computa-
tions required for the tasks covered in this paper. Even the recent work proposed
in [12] on measuring signals with timed patterns is not of help in our application,
since it does not handle, neither in the specification nor in the measurement, the
notion of local minima/maxima that is necessary for peak detection. Further-
more, the operator of measure is separated by the specification of the pattern to
match.

SRV [9] is a stream runtime verification language that requires explicit encod-
ing of relations between input and output streams, which is an awkward way of
encoding the complex tasks of this paper. Moreover, unlike Boolean SRVs [5],
QREs allow multiple unrestricted data types in intermediary computations and
a number of their questions are decidable for these arbitrary types.

8 Conclusions and Future Work

The tasks of discrimination and peak detection, fundamental to arrhythmia-
discrimination algorithms, are easily and succinctly expressible in QREs. One
obvious limitation of QREs is that they only allow regular matching, though
this is somewhat mitigated by the ability to chain QREs (though the streaming
combinator �) to achieve more complex tasks. One advantage of programming
in QREs is that it automatically provides us with a base implementation, whose
time and memory complexity is independent of the stream length.

As future work, it will be interesting to compile a QRE into C or assembly
code to measure and compare actual performance on a given hardware platform.
Also, just like an RE has an equivalent machine model (DFA), a QRE has an
equivalent machine model in terms of a deterministic finite-state transducer [1].
This points to an analysis of a QRE’s correctness and efficiency beyond testing.
Two lines of inquiry along these lines are promising in the context of medical
devices.

Probabilistic analysis. Assume a probabilistic model of the QRE’s input
strings. For medical devices, such a model might be learned from data. We
may then perform a statistical analysis of the output of the QRE under such an
input model. In particular, we may estimate how long it takes the ICD to detect
a fatal arrhythmia, or the probability of an incorrect detection by the ICD.
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Energy calculations. We may compute the energy consumption of an algo-
rithm that is expressed as a QRE, by viewing consumption as another quan-
tity computed by the QRE. Alternatively, we may label the transitions of the
underlying DFA by “energy terms”, and leverage analysis techniques of weighted
automata to analyze the energy consumption. Energy considerations are crucial
to implanted medical devices that must rely on a battery, and which require
surgery to replace a depleted battery.
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