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Verification
Model checking: “Does model M satisfy property φ?”

Discovery

For model M, what is the set of properties Φ that it satisfies?

Query Checking

For a model M and a property template φ[x ], what is a solution c
for x such that M satisfies φ[x := c]?

Example

“What conditions must be met for the car to eventually stop?”

I Restrict our properties of interest to LTL formulas.
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Outline

1. Linear Temporal Logic

2. LTL Formulas as Automata

3. LTL Model Checking

4. LTL Query Checking

5. Edge Shattering

Some Related Work

I Query checking originally for CTL (Chan CAV 2000, Gurfinkel
TSE 03)

I Earlier work in LTL query checking (Chockler HVC 2010)
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Linear Temporal Logic (LTL)

Modal logic, useful for reasoning about outcomes of sequences or
paths.

I X rain – Tomorrow will be rainy.

I red U green – The traffic light is red until it is green.

I G sunny – It is always sunny (in Philadelphia).

I G(button→ F stop) – Whenever the button is pressed, the
machine eventually stops.
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LTL formulas as automata

I Can think of LTL formulas as automata that accept (infinite)
sequences of inputs:

aU b =⇒
a & !b

b

1

G (button→ F stop) =⇒
!button | stop

button & !stop
stop

!stop

I As automata, facilitates LTL model checking when using
similar style automata for data.

I Want to work in this representation to discover new properties.
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LTL Model Checking

Automaton-based methods (Vardi, Wolper 86)

1. Take model M, convert to an automaton representation BM .

2. Take LTL formula φ, compute automaton for ¬φ: B¬φ.

3. Compute a composed automaton Bc = BM ∩ B¬φ

4. Determine if L (Bc) = ∅
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LTL Templates from LTL Formulas

I An LTL template contains some unknown.

I Relax one part of an LTL formula to be variable (placeholder).

G sunny =⇒ G x
GF halts =⇒ GF x
G(a→ F b) =⇒ G(x → F b)

I Can we modify existing LTL model checking approach to help
us perform discovery?



LTL Templates from LTL Formulas

I An LTL template contains some unknown.

I Relax one part of an LTL formula to be variable (placeholder).

G sunny =⇒ G x
GF halts =⇒ GF x
G(a→ F b) =⇒ G(x → F b)

I Can we modify existing LTL model checking approach to help
us perform discovery?



Automaton Based Query Checking

From LTL Model Checking:
I Compute a composed automaton Bc = BM ∩ B¬φ

I What do the transition labels look like on Bc?

I Determine if L (Bc) = ∅
I How is this determined given the new edge labels?
I The choice of grounding for the variable can invalidate edges

a

a & b

b !x | a

x & b
1
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Büchi Propositional Automata

a

a & b

b !x | a

x & b
1

I Automaton representation of infinite length languages.

I Standard product composition of Büchi automata uses single
alphabet symbols.

I Because an LTL template contains a variable, labels along
transitions of the composition Büchi will contain propositional
formulas as well.
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Shattering

Sub-problem: Shattering an edge

Given a propositional formula with variable x , what assignments of
x can make the formula to be logically equivalent to false?

Shattering a Büchi automaton

Which edges can/must be shattered to make L(Bc) = ∅?

a

a & b

b !x | a

x & b
1

I Choice of edge set −→ constraints on assignments for x

I Resolve all constraints to produce solutions for x .
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Shattering a Büchi automaton

Which edges can/must be shattered to make L(Bc) = ∅?

a

a & b

b !x | a

x & b
1

I Choice of edge set −→ constraints on assignments for x

I Resolve all constraints to produce solutions for x .



Shattering

Sub-problem: Shattering an edge

Given a propositional formula with variable x , what assignments of
x can make the formula to be logically equivalent to false?

Shattering a Büchi automaton
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Conclusion

Summary

I Developed automaton-based approach for LTL query checking

I “Shattering condition” problem yielded interesting side results

Ongoing & Future Work

I Expanding selection of datasets for evaluation

I Allowing for multiple variables/larger uncertainty
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