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Estimability Analysis and Optimal Design in
Dynamic Multi-scale Models of Cardiac

Electrophysiology
Matthew S. Shotwell and Richard A. Gray

Wepresent an applied approach to optimal experimental design and estimability analy-
sis for mechanistic models of cardiac electrophysiology, by extending and improving on
existing computational and graphical methods. These models are ‘multi-scale’ in the
sense that the modeled phenomena occur over multiple spatio-temporal scales (e.g.,
single cell vs. whole heart). As a consequence, empirical observations of multi-scale
phenomena often require multiple distinct experimental procedures. We discuss the use
of conventional optimal design criteria (e.g., D-optimality) in combining experimen-
tal observations across multiple scales and multiple experimental modalities. In addi-
tion, we present an improved ‘sensitivity plot’—a graphical assessment of parameter
estimability—that overcomes a well-known limitation in this context. These techniques
are demonstratedusing aworkingHodgkin–Huxley cellmodel and three simulated exper-
imental procedures: single-cell stimulation, action potential propagation, and voltage
clamp. In light of these assessments, we discuss two model modifications that improve
parameter estimability, and show that the choice of optimality criterion has a profound
effect on the contribution of each experiment.
Supplementary materials accompanying this paper appear on-line.
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1. INTRODUCTION

Multi-scale methods are used to study phenomena that occur over multiple temporal
or spatial scales (Hunter and Borg 2003), and observations at different scales often require
distinct experimental procedures.Humanphysiological processes are inherentlymulti-scale,
as the human body coordinates the transfer of “information” across a wide range of spatial
and temporal scales. No singlemodel is yet capable of reproducing this hierarchy, and one of
the biggest outstanding problems in quantitative physiology is to develop the methodology
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for simultaneous modeling and assessment of data that arise from multiple, multi-scale
experimental frameworks.

Multi-scale models can be constructed by combining single-scale models (Ingram et al.
2004), which increase themodel complexity in terms of the number and relationships among
model parameters. Indeed, electrophysiological models are often overparameterized (Fink
and Noble 2009). Thus, in developing multi-scale models, it is helpful to characterize the
relationships between the model parameters and model outputs. Specifically, if there are
multiple parameter values that render identical model output, then the parameters cannot be
uniquely identified given model output, nor estimated using empirical observations.

Evenwhen the parameters are estimable, there can be considerable statistical uncertainty.
However, by studying the model, experiments can be designed to reduce uncertainty. In the
case of multi-scale models, where there are distinct experimental procedures that give rise to
observations at each scale, it can also be helpful to compare the relative degree of information
associated with each type of experiment, and thereby focus limited resources on the most
informative experiments.

In this article, we present a practical and general computational and graphical approach
to estimability assessment and optimal experimental design in the context of multi-scale
models. These methods are demonstrated using a working Hodgkin–Huxley model of the
mammalian cardiac excitable cell and three simulated experimental procedures that are
commonly used to study these cells (Hodgkin and Huxley 1952). The three experimental
procedures are as follows: single-cell excitation that produces an all-or-none action potential,
action potential propagation along a fiber or ‘cable’ of electrically connected cells (Joyner
et al. 1991), and a voltage clampexperiment designed to study the voltage-gatedNa+ channel
(Berecki et al. 2010), which is primarily responsible for the initiation of an action potential.
In light of these assessments, we discuss two model modifications that improve parameter
estimability, and show that the choice of optimality criterion has a profound effect on the
contribution of each experiment. In order to facilitate the ensuing discussion, and to promote
the future use of these methods, we have created an on-line supplement of R computer code
that is referenced throughout the article as the “Code Supplement.”

2. BACKGROUND

The methods and techniques associated with nonlinear model identifiability, parameter
estimability, optimal experimental design, and their association are well studied (Rothen-
berg 1971; Jacquez and Greif 1985; Walter and Pronzato 1996). In related fields, parameter
estimation is sometimes called the “inversion problem.” The conditions under which inver-
sion is possible have been studied in the context of single current voltage clamp models
(Wang and Beaumont 2004; Lee et al. 2006; Csercsik et al. 2012; Raba et al. 2013). In con-
trast, we present a generic approach that has applications beyond excitable cell models, and
that incorporates multiple, multi-scale experimental frameworks to simultaneously solve
the inversion problem.
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2.1. MODEL IDENTIFIABILITY

Let η(x, θ) = [η1(x, θ) . . . ηm(x, θ)]T represent the m-variate response of an experi-
mental system under condition x , given p-variate parameter θ . The experimental condition
x may be arbitrarily structured, depending on the nature of the experiment. For example,
consider a pharmacokinetic model for the concentration of drug after intravenous infusion.
The experimental condition variable might simultaneously represent the time relative to
infusion, initial drug concentration, and the rate and duration of infusion.

The model given by η(x, θ) is identifiable if and only if η(·, θ) = η(·, θ ′) implies θ = θ ′
for all possible θ (Rothenberg 1971). Or in words, if the response function at θ is identical
to that at θ ′, then θ ′ must equal θ , for all possible θ . Otherwise the model is not identifiable.
Thus, identifiability can be difficult to establish, since all possible parameter values must be
considered. However, in many applications, it is sufficient to localize the analysis of model
identifiability to a region of plausible parameter values. A model is locally identifiable at
θ ′ if the foregoing implication holds for θ in a neighborhood of θ ′, which suggests that the
problem can be analyzed by linearization of η(x, θ) about θ ′. The first-order Taylor series
approximation of η(x, θ) in a neighborhood of θ ′ is

η(x, θ) ≈ η
(
x, θ ′) + J

(
x, θ ′)(θ ′ − θ

)
, (1)

where the elements of the Jacobian J (x, θ ′) are

J
(
x, θ ′)

i, j =
[
∂ηi (x, θ)

∂θ j

]

θ=θ ′
(2)

for i = 1, . . .m and j = 1, . . . , p. Thus, locally identifiability is verified when, for some
experimental condition x , there are no nontrivial solutions (i.e., θ �= θ ′) to the following
linear system

J
(
x, θ ′)(θ ′ − θ

) = 0. (3)

By definition, this requires linear independence in the columns of J (x, θ ′). However, in
most cases no single experiment is sufficient to satisfy the criterion for local identifiability.
Local identifiability can then be verified by searching for two or more experiments that
jointly ensure no nontrivial solutions to an expanded linear system

J
(
x, θ ′)(θ ′ − θ

) = 0, (4)

where J(x, θ ′) is an nm × p matrix consisting of n blocks of m × p Jacobians (expression
2), and x are the n associated experimental conditions. Local identifiability about θ ′ is then
assessed by verification of columnwise linear independence in J(x, θ ′), or equivalently
that M(x, θ ′) = J(x, θ ′)T J(x, θ ′) is nonsingular. The matrices J(x, θ ′) and M(x, θ ′) are,
respectively, the sensitivity matrix and information matrix associated with the collection of
experimental conditions x. Also note that the information matrix can be written as the sum
∑n

i=1 μ(xi , θ ′), where μ(xi , θ ′) = J (xi , θ ′)T J (xi , θ ′) is the information contribution of
condition xi .
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Grewal and Glover (1976) showed that local identifiability of a linearized model is suffi-
cient, but not necessary, to demonstrate local identifiability of the corresponding nonlinear
model. This has generated interest in alternative criteria and tests for local identifiability
(e.g., Hengl et al. 2007; Raue et al. 2009; Kim and Lindsay 2014). However, identifiabil-
ity of the linearized model remains an important requirement for many types of nonlinear
optimization methods, as we demonstrate below for the nonlinear least-squares method.

2.2. PARAMETER ESTIMABILITY

Parameter estimability is related to identifiability, but is conditional on a specific experi-
mental design. Specifically, model parameters are considered locally estimable under exper-
imental design x, when x is sufficient for local identifiability. To further illustrate the con-
nection, consider the statistical model

y = η(x, θ) + ε, (5)

where y is an nm×1 vector of observations on responses η(x, θ) in a series of n experiments
x, and ε represents a vector of random errors. For simplicity, we assume that the errors
are independent and homoscedastic with mean zero and variance σ 2. The nonlinear least-
squares (NLS) estimate for θ satisfies the estimating equations J(x, θ̂ )T [ y− η(x, θ̂ )] = 0.
Substituting expression (1) renders the linearized NLS estimating equations

M(x, θ ′)
(
θ̂ − θ ′) = J

(
x, θ ′)T [

y − η
(
x, θ ′)] . (6)

The solution to (6) is unique when M(x, θ ′) is nonsingular, or equivalently when θ is locally
estimable at θ ′. Expression (6) motivates an iterative Newton–Raphson solution for the NLS
estimating equations

θ̂s+1 = θ̂s + M
(
x, θ̂s

)−1 J
(
x, θ̂s

)T [
y − η

(
x, θ̂s

)]
, (7)

In order to evaluate the algorithm at each iteration,M(x, θ̂s)must be nonsingular, and thus θ

must be locally estimable at θ̂s . This demonstrates that local identifiability of the linearized
model is an important computational feature, although unnecessary for local identifiability
of the corresponding nonlinear model.

2.3. OPTIMAL EXPERIMENTAL DESIGN

Even when the criterion for parameter estimability is satisfied, parameter estimates may
be highly variable, or otherwise ill-conditioned. For NLS estimators, the information matrix
M(x, θ) determines the conditioning of the estimation problem. For instance, the approxi-
mate variance of the NLS estimate is

V [θ̂] = σ 2M
(
x, θ̂

)−1
. (8)
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The conditioning of an estimation problem can be assessed using a variety of criteria. One
such criterion is the matrix condition number. For a linear system AX = C , the condition
number of A is equal to ||A||||A−1||, where ||A|| is matrix norm. The condition number
represents the maximum relative change in ||X || induced by a one-unit relative change in
||C ||. Specifically,

||�X ||
||X || ≤ ||A||∣∣∣∣A−1

∣∣∣∣ ||�C ||
||C || , (9)

where�X is the change in X that results from a change�C inC . When ||A|| is the induced
2-norm (i.e., the largest Euclidean norm ||Ax || where x is a unit vector), the condition
number is identical to the ratio of the maximum and minimum eigenvalues of A. Thus,
the condition number can take values greater than or equal to one. An estimation problem
is ill-conditioned when the condition number of the information matrix is large, and well
conditioned when the condition number is near one. The reciprocal of the condition number
(RCN), of course, has the reciprocal interpretation. Experimental designs that maximize the
RCN of the information matrix are called K-optimal (Rempel and Zhou 2014). Thus, the
condition number is called the K-optimality criterion.

The determinant of the information matrix is also indicative of ill-conditioned estima-
tion problems, and has an intuitive interpretation. Specifically, the NLS estimate θ̂ has an
approximate normal distribution, such that the volume of the confidence ellipsoid for θ is
inversely related to the determinant of the information matrix. Thus, experiments that min-
imize the determinant of M(x, θ̂ )−1 also minimize the confidence ellipsoid volume. Such
designs are called D-optimal, and |M(x, θ̂ )−1| is the D-optimality criterion (Fedorov and
Leonov 2013).

The related E-optimality criterion is the reciprocal of the minimum eigenvalue of the
information matrix. Thus, minimizing the E-optimality criterion is equivalent to minimizing
the largest diameter (principle axis) of the confidence ellipsoid.

A fourth criterion, the A-optimality criterion can be used to isolate uncertainty about one
or more parameters: tr[AM(x, θ)−1], where A is a square nonnegative definite matrix and
tr[·] represents the matrix trace. For example, when A = I , where I is the p × p identity
matrix, theA-optimality criterion is proportional to the average approximate variance among
the elements of θ̂ .

3. MULTI-SCALE ESTIMABILITY AND OPTIMAL DESIGN

The experimental frameworks that inform multi-scale models of cardiac electrophysi-
ology often require significant preparation, but can yield information under a rich array
of experimental conditions. For example, the cost of each test voltage in a voltage clamp
experiment is relatively minor in comparison to the effort of preparing the experiment. Thus,
the cost of experimentation is “front loaded,” whereas in other experimental frameworks,
for example human pharmacokinetic studies, the cost is more evenly distributed across the
experimental conditions.

The notion of “front loaded” cost is exacerbated inmulti-scalemodels, since observations
at different scales often require different experimental frameworks. Hence, in designing
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collections of experiments to inform such models, there may be less interest in optimizing
within-experiment design aspects (e.g., the count and spacing of test voltages), and more
interest on the types and frequency of whole experiments, although the former is also
amenable to optimal design. Similarly, in assessments of parameter estimability, themodeler
may be more interested in the types of experiments that are necessary to simultaneously
estimate the model parameters.

The following discussion illustrates these unique multi-scale aspects of estimability and
optimal design using a simplified Hodgkin–Huxley model of the cardiac action potential,
and three distinct experimental modalities, which represent three distinct spatio-temporal
scales.

4. CARDIAC CELL MODEL

Dynamic models of cardiac electrophysiology are used to study the behavior of cardiac
tissue under pathological and therapeutic perturbations (e.g., arrhythmias and defibrillation,
respectively). The model presented below is a modification of the well-known Hodgkin–
Huxley (Hodgkin and Huxley 1952) model of nerve conduction and excitation, that retains
a detailed characterization of Na+ channel kinetics, which is primarily responsible for rapid
depolarization during the cardiac action potential. The simplified model is a system of
partial differential equations in time t , and one dimension of space z, which represents an
electrically conductive fiber of cardiac cells. The model equations are as follows:

Cm
∂V

∂t
= −Iion − Istim − CmD

∂2V

∂z2

∂m

∂t
= (m∞ − m)/τm

∂h

∂t
= (h∞ − h)/τh, (10)

where V represents transmembrane voltage, Iion is the transmembrane current resulting
from the flux of Na+ and K+ ions through voltage-gated ion channels:

Iion = gNam
3h

(
V − ENa

) + gK
(
V − EK

)
e−(V−EK )/kr . (11)

The variables m and h are gating variables that, respectively, characterize the voltage-
dependent activation and inactivation of transmembrane Na+ channels. Istim is an externally
applied stimulus current, and D ∂2V

∂z2
represents the diffusion of charge along the tissue fiber.

The voltage dependence of m, h, and τh is expressed as follows:

m∞ =
[
1 + e−(V−Em )/km

]−1

h∞ =
[
1 + e−(V−Eh)/kh

]−1

τh = 2τh0
[
e−δh(V−Em )/km + e(1−δh)(V−Em )/km

]−1
. (12)
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Table 1. Parameter values and descriptions.

Parameter Value Units Description

Cm – μF·cm−2 Membrane capacitance
gNa 11.00 mS·cm−2 Na+ channel maximum conductance
ENa 65.00 mV Na+ channel Nernst reversal potential
gK 0.30 mS·cm−2 K+ channel maximum conductance
EK −83.00 mV K+ channel Nernst reversal potential
kr 21.28 mV K+ channel nonlinearity
D 0.001 cm2·ms−1 Diffusion coefficient
Em −41.00 mV Na+ channel half-activation voltage
km 4.00 mV Na+ channel activation slope
τm 0.12 ms Na+ channel activation time constant
Eh −74.70 mV Na+ channel half-inactivation voltage
kh −4.40 mV Na+ channel inactivation slope
τh0 6.81 ms Na+ channel inactivation time constant scale
δh 0.80 – Na+ channel inactivation time constant asymmetry

The dimension “mS” represents millisiemens, the Standard International (SI) unit for electrical conductance. One
siemens is equal to the reciprocal of one ohm, the SI unit for electrical resistance. In notation S = 	−1.

The parameter Cm represents membrane capacitance, which scales the transmembrane
voltageV .We treat this parameter as fixed, and interpretV relative tomembrane capacitance.
Thus, themodel has thirteen free parameters, collectively denoted θ , which are listed in Table
1. The parameter values were selected to be consistent with experimental results in rabbits
(Gray et al. 2013).

The model solutions can be used to make predictions about the behavior of cardiac tissue
under a variety of experimental conditions. Specifically, the cell model exhibits a stable
quiescent steady state in which the cell is capable of “excitation” via external stimulus,
which results in an all-or-none action potential; a rapid change in transmembrane potential
that plateaus for a period of time and subsequently returns to quiescent state (see model
output V in Fig. 1). Adjacent cells can be excited by the neighboring action potential,
thereby propagating the action potential along a fiber. The transmembrane potential can also
be experimentally manipulated in order to investigate the transmembrane currents that give
rise to an action potential. The following three subsections describe three such experimental
frameworks that were simulated to examinemodel behavior at three distinct spatio-temporal
scales.

4.1. SINGLE-CELL STIMULATION

Single-cell stimulation experiments were modeled by prohibiting charge diffusion along
the tissue fiber (i.e., by setting parameter D = 0). Given the parameter values listed in
Table 1, initial values V = −83, m = m∞, and h = h∞, and a stimulus perturbation Istim,
the solutions of Eqs. (10) were approximated using first-order Euler numerical integration
(Code Supplement Section 2). Figure 1 illustrates the single-cell solution given a smoothed
square-wave stimulus. The figure is separated into two columns, where the left-hand panels
represent the depolarization phase and the right-hand panels represent repolarization. The
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Figure 1. Single-cell solution for Eqs. (10), (11), and (12). A smoothed square-shaped stimulus current was
applied over two ms (top-left panel).
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two phases are plotted separately, since depolarization occurs over a much shorter time scale
and is associated with much larger transmembrane currents.

4.2. ACTION POTENTIAL PROPAGATION

A four centimeter fiber of tissuewas simulated to examine action potential behavior under
propagation conditions. One millimeter of the fiber terminus was stimulated by holding the
transmembrane potential at zero (via Istim) for two milliseconds, which induced a propagat-
ing action potential. Each of the model outputs were then recorded at the midpoint of the
fiber (2cm; Code Supplement Section 3). Web Figure 1 illustrates the midpoint solution,
where ID = D∂2V/∂z2 is plotted instead of Istim, since the stimulus for the fiber midpoint
arises from neighboring tissue.

4.3. NA+ CHANNEL INACTIVATION VOLTAGE CLAMP

Voltage clamp experiments are designed to isolate the time- and voltage-dependence
of transmembrane currents by experimentally “clamping” the transmembrane potential at
specified voltages andmeasuring the resultant currents. A voltage clamp protocol comprises
a sequence of clamp voltages and the durations of each clamp. Protocols are designed to
elucidate the kinetics of particular transmembrane currents.

In the cardiac cell, voltage-gatedNa+ channels are activated by a depolarization stimulus,
which causes further rapid depolarization due to the influx of Na+ ions. The Na+ channel
then becomes inactivated. The kinetics of Na+ channel inactivation can be studied using
a voltage clamp protocol consisting of conditioning, pre-test, and test pulse triplets. The
conditioning pulse (−140 mV) remains constant in each triplet, and is held for a duration
(1 s) that ensures the cell has recovered from inactivation. The pre-test pulse is variable
(−140mV to 0mV in 5mV steps), and is held for a duration (1 s) that is sufficient to achieve
a certain degree of steady-state inactivation. The subsequent test pulse (−20 mV for 20 ms)
causes Na+ channel activation, which is attenuated by the degree of inactivation induced by
the pre-test pulse. The degree of attenuation in the peak current following each test pulse
is used as a measure of steady-state inactivation. Steady-state Na+ channel inactivation
exhibits a sigmoidal shape as a function of conditioning voltage, which is modeled using
the parametric sigmoidal function h∞ (12). See Berecki et al. (2010) for additional details.
This protocol was simulated by fixing the transmembrane potential at the appropriate levels
and times (Code Supplement Section 4).

4.4. STATISTICAL FRAMEWORK

In the action potential propagation and single-cell experiments, ion current Iion is reported
as a function of transmembrane potential V separately during the depolarization and repolar-
ization phases, since the Iion versus V relationship exhibits hysteresis across these phases.
For the Na+ channel inactivation experiments, the maximum ion current following each
test pulse is reported as a function of the pre-test voltage. Because ion current is the only
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observed response, we employ a univariate version of model (5) as the basis for assessments
of identifiability and optimal design:

y = η(v, x, θ) + ε, (13)

where y is a vector of measured currents at (conditioning) voltages v, under experimental
conditions x. In this context, each element of x represents the type of experiment. Thus,
as in expression (5), the model outputs are “stacked” into a single vector. The assumption
of homoscedastic and independent errors is approximate, but can be relaxed using general
nonlinear least-squares or likelihood methods.

In the computer code implementation, the function η is approximated by interpolating
(with natural cubic splines) the time solutions for V and Iion, which are computed by first-
order Euler numerical integration (Code Supplement Sections 2, 3, and 4). The sensitivity
matrices were computed using numerical differentiation in a similar fashion.

Each type of experiment gives rise to a series of currentmeasurements, which are sampled
as a function of voltage. Sincewe are concernedwith identifiability and optimal design at the
whole experiment level, we denote the sensitivity and information matrices associated with
the single-cell, action potential propagation, and Na+ channel inactivation voltage clamp
experiments as J0D, J1D, JVC, and M0D, M1D, MVC, respectively, where it is understood
that each is conditional on the corresponding subsets of v, x, and themodel parameter vector
θ . Thus, the information matrix for each experiment is computed by substituting η(v, x, θ)

for η(x, θ) in the Jacobian expressions 2, 3, and 4. See Web Appendix B for an explicit
expression for the information matrix.

The single-cell and action potential propagation experiments are further separated by
depolarization and repolarization phases, which are denoted with subscripts 0Dr and 0Dd,
respectively. The pooled information matrix, which represents the combined information
from each type of experiment, is expressed as a weighted sum of the experiment-specific
information matrices as follows:

Mpool = w0DrM0Dr + w0DdM0Dd + w1DrM1Dr + w1DdM1Dd + wVCMVC. (14)

The weights in expression (14) are nonnegative scalar quantities that sum to one, and repre-
sent the relative contribution of each type of experiment. The weights can be considered the
relative amounts of “effort” allocated to each type of experiment, or can be used in aweighted
estimation procedure. The pooled informationmatrix can be equivalently expressed in terms
of the weighted experiment-specific sensitivity matrices, e.g., Mpool = JT J where J is the
weighted sensitivity matrix

J = [√
w0Dr J0Dr,

√
w0Dd J0Dd,

√
w1Dr J1Dr,

√
w1Dd J1Dd,

√
wVC JVC

]
.T (15)

The weights can then be selected to achieve optimality with respect to an optimal design
criterion on the pooled information matrix.

For the D-, E-, and A-optimality criteria, and under certain regularity conditions, the
optimization problem is convex and can be implemented using a simple gradient-descent
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Table 2. The K-, D-, E-, and A-efficient weights for each type of experiment and the reciprocal condition number
(RCN) of the corresponding pooled information matrix.

Weight K-optimal D-optimal E-optimal A-optimal

RCN 1.13 × 10−8 1.05 × 10−10 4.48 × 10−9 1.76 × 10−9

w0Dd 5.4 × 10−4 3.1 × 10−1 1.2 × 10−1 2.1 × 10−1

w1Dd 8.9 × 10−5 3.9 × 10−1 4.1 × 10−2 1.0 × 10−1

w0Dr 4.9 × 10−1 1.0 × 10−5 8.3 × 10−7 1.0 × 10−5

w1Dr 5.1 × 10−1 1.0 × 10−5 8.1 × 10−1 6.2 × 10−1

wVC 3.9 × 10−4 3.0 × 10−1 2.2 × 10−2 7.3 × 10−2

method (Fedorov and Leonov 2013). The K-optimality criterion is not convex, and not
necessarily smooth. To account for this, we used 105 random initializations of the study
weights, followed by numerical gradient-descent. The random initialization step is equiv-
alent to nonadaptive stochastic search (NASS). The algorithm details are provided in Web
Appendix A. Implementation details are provided in Code Supplement Section 5.

4.5. COMPUTATIONAL ESTIMABILITY AND EFFICIENCY ASSESSMENT

The reciprocal condition number (RCN) for each experiment-specific informationmatrix
was equal to zero or less than “double” floating-point precision (approximately 2.2×10−16),
indicating that no single experiment is sufficient to simultaneously estimate the 13 freemodel
parameters (see Table 1). However, the current diffusion parameter D is experimentally fixed
in the single-cell and voltage clamp experiments. Excluding this parameter, the RCN for the
pooled single-cell information matrices (w0Dr = w0Dd = 1/2) was 3.98 × 10−14, which
indicates that the 12 remaining parameters are weakly estimable using data that arise from
single-cell experiments.

Combining the single-cell, action potential propagation, and inactivation voltage clamp
experiments with equal weights improved the RCN of the pooled information by more than
seven orders of magnitude (6.94 × 10−10), relative to the largest RCN associated with any
individual experiment (2.40×10−18 for the action potential propagation experiment). Thus,
by pooling information across the three types of experiment, the 13 model parameters are
simultaneously estimable. However, in this scenario, some of the parameter estimates are
highly correlated (cf. expression 8). The largest correlation, 0.995, occurs between parameter
estimates for δh and kh .

The K-, D-, E-, and A-efficient weights (where A = I ) for each of the experiments are
listed in Table 2. The RCN of the K-efficient design was improved by more than two orders
of magnitude (1.13 × 10−8), relative to the equal-weighted design. The largest correlation
between any two parameter estimates, again for δh and kh , was reduced to 0.985. The RCN
for the D- and A-efficient designs were 1.05 × 10−10 and 1.76 × 10−9, respectively.

4.6. GRAPHICAL ESTIMABILITY AND EFFICIENCY ASSESSMENT

The sensitivity plot (McLean and McAuley 2012) is a graphical technique to aid in the
assessment of estimability and design efficiency, by examining the weighted model sensi-
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tivity matrix (e.g., expression 15). The sensitivity values are graphically arranged according
to model parameter, so that their linear dependencies are more easily visualized.

The sensitivity plot is suitable for models with few parameters, but scales poorly as
dependencies become increasingly difficult to visualize. Furthermore, the sensitivity plot
does not directly convey information regarding the conditioning of estimation problems. In
order to overcome these limitations, we present an augmented sensitivity plot that utilizes
shading to indicate the degree of linear dependence among the weighted sensitivities, and
thus the design efficiency.

For each parameter, the shading intensity represents the fraction variability in the cor-
responding sensitivities that cannot be explained by a linear combination of sensitivities
for the remaining parameters. Thus, the shading intensity is a measure of linear indepen-
dence. Lighter shading indicates greater dependence, reduced estimability, greater correla-
tion among parameter estimates, and poor conditioning of the information matrix. When
no shading is visible, the parameters are not estimable, or weakly estimable. Specifi-
cally, for each parameter indexed by k, the shading intensity is computed as follows:
sk = 1 − (eTk ek/J

T
k Jk)r , where ek = Jk − J �k(JT�k J �k)− JT�k Jk and r is a graphical tuning

parameter that scales the shading intensity (r = 10 in the examples). In these expressions,
Jk denotes the kth column of the weighted sensitivity matrix J , its complement J �k is a
matrix comprising the remaining p− 1 columns, and (JT�k J �k)− is the Moore–Penrose gen-

eralized inverse of JT�k J �k . The rightmost addend of the second expression represents the
linear least-squares approximation of Jk given J �k .

Figure (2) is the augmented sensitivity plot for the K-efficient weighted (see Table 2)
sensitivitymatrix (15), arranged by parameter, transmembrane voltage, and experiment type.
The sensitivity plot visually corresponds to the transpose of the weighted sensitivity matrix.

4.7. ALTERNATIVE PARAMETERIZATION

Since the shading for parameters δh and kh is light but detectable in Fig. 2, the graphical
and computational assessments are consistent; that parameters δh and kh are only weakly
estimable and their estimates are highly correlated. In order to overcome this, an alternative
model parameterization was considered.

The voltage-dependent time constants of Na+ channel activation (τm) and inactivation
(τh) are thought to differ in their scale but have similar shape. In particular, activation is
much faster than inactivation (Beaumont et al. 1993). Thus, by expressing τm as a fraction of
τh , we hypothesized that information associated with Na+ channel activation would aid in
estimating the kinetics of inactivation (i.e., δh and kh). In the alternative parameterization, the
scalar τm was instead set equal to 1/10th of the voltage-dependent τh given in expression (12).
Hence, both time constants were modeled as proportional, voltage-dependent quantities.
This modification had the effect of reducing the correlation between estimates of kh and δh ,
at the expense of additional correlation among other model parameters, notably gNa and
ENa (compare the augmented sensitivity plot in Fig. 2 with Web Figure). The K-efficient
RCN of the modified model was improved (increased) by 73%, relative to the original
model.
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Figure 2. Augmented sensitivity plot for the 13 parameters of the cardiac ion-channel model given by expressions
(10), (11), and (12). The uppermost row of panels plot the model solution (solid black lines) for Iion as a function
of V during depolarization and repolarization, and in single-cell and fiber midpoint experiments. Dashed black
lines mark the y-axis origin. Solid gray lines represent the sensitivity values for the corresponding parameter and
experiment type. In each row of panels, the intensity of the shaded regions is constant, and represents the degree
of linear dependence of the corresponding parameter sensitivity values on that of the other parameters. Lighter
shading indicates greater dependence and reduced identifiability and estimability. When no shading is visible, the
model is not estimable, or weakly estimable.

4.8. RESCALING MEMBRANE POTENTIAL AND TIME

Nondimensionalization is a method to identify model parameters that have the sole effect
of scaling the model variables. In the modified model of the preceding section, transmem-
brane potential and time can each be rescaled as follows: t ′ = t/t0 and V ′ = V/V0. The
tissue fiber position variable (z) can also be rescaled, but we have not done so here. The
scale parameters t0 and V0 are then selected such that the rescaled model in variables t ′
and V ′ has fewer parameters. Specifically, let t0 = g−1

Na and V0 = ENa . Substituting these
expressions into equations (10), (11), and (12) yields the following simplified expression
for Iion:
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Iion = m3h
(
V ′ − 1

) + g′
K

(
V ′ − E ′

K

)
e−

(
V ′−E ′

K

)
/k′

r , (16)

where g′
K = gK/gNa , E ′

K = EK/ENa , and k′
r = kr/ENa . Each other model parameter

(except δh , which is already unitless) is similarly scaled. Indeed, the parameters gNa and ENa

only appear as ratios of other parameters. In other words, given the other model parameters,
the only effects of ENa and gNa are to scale membrane potential and time, respectively.
Thus, by ignoring the scale of membrane potential and time, these two parameters can be
fixed for the purposes of identifiability, estimability, and optimal design analyses. Doing so
improves the K-efficient RCN by nearly two orders of magnitude, relative to the modified
model described in the preceding section (compare Web Figure 2 with Web Figure 3).

5. DISCUSSION

The approaches described above, regarding estimability analysis of an optimal design,
are generic and rely on numerical methods to compute model responses and their sensitivi-
ties to the model parameters. This is especially satisfactory when there are many alternative
models, complex models, or models with many multi-scale outputs. Secondly, the methods
we employ are closely tied to the NLS estimation procedure. Indeed, much of the com-
puter code that implements the estimability analysis and optimal design procedures can be
reused for the purposes of estimation. For an applied statistician, this continuity may help
to conceptualize and implement the process, from estimability analysis and optimal design
to eventual parameter estimation using experimental data.

Themethods presented herein are not restricted to statistical models with continuous out-
come and additive error. More generally, for models that are expressed using a probability
model, identifiability implies that no two distinct parameter values render identical proba-
bility distributions. The notions of estimability and optimal design are likewise extended by
evaluating the likelihood function sensitivities and Fisher information matrix, respectively.

The estimability and optimal design tasks are modular, in the sense that any number of
experiments can be considered or omitted. Indeed, the augmented sensitivity plot can be used
interactively to consider alternative model parameterizations, and to identify experiments
or even conditions within experiments that are most informative about one or more model
parameters. This modularity is especially useful in the context of multi-scale phenomena
and the associated experimental frameworks, in which the effort is often “front loaded.”

The criterion selected for design optimization can have a significant effect on the weight-
ing of experiments, as is evidenced by the weights in Table 2. Although some of the weights
are very small, it should not be taken for granted that the corresponding experiment can be
omitted. For example, by omitting any one experiment, the K-efficient RCN is increased by
at least an order of magnitude. However, as a counterexample, omitting the action potential
propagation experiments has little effect on the D-efficient RCN. The goals of modeling
and estimation should be carefully considered in selecting an optimality criterion.

In conclusion, there is a great need to develop, calibrate, and validate cardiac cell models
and other types ofmodels that are appropriate for use atmultiple scales. Given the theoretical
basis for the existing equations for electrical activity in the heart at multiple scales, it may
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be feasible to develop and justify robust cardiac cell models that are locally indentifiable,
make efficient use of experimental data, and are consistent with phenomenon at multiple
scales.

6. SUPPLEMENTARY MATERIALS

The Code Supplement, Web Appendices, and Web Figures referenced in Sects. 4.1, 4.2,
4.3, 4.4, 4.7, and 4.8 are available with this paper.
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