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Stochastic models such as Continuous-Time Markov Chains (CTMC) and Stochastic Hybrid 
Automata (SHA) are powerful formalisms to model and to reason about the dynamics of 
biological systems, due to their ability to capture the stochasticity inherent in biological 
processes. A classical question in formal modelling with clear relevance to biological 
modelling is the model checking problem, i.e. calculate the probability that a behaviour, 
expressed for instance in terms of a certain temporal logic formula, may occur in a given 
stochastic process. However, one may not only be interested in the notion of satisfiability, 
but also in the capacity of a system to maintain a particular emergent behaviour unaffected 
by the perturbations, caused e.g. from extrinsic noise, or by possible small changes in 
the model parameters. To address this issue, researchers from the verification community 
have recently proposed several notions of robustness for temporal logic providing suitable 
definitions of distance between a trajectory of a (deterministic) dynamical system and the 
boundaries of the set of trajectories satisfying the property of interest. The contributions 
of this paper are twofold. First, we extend the notion of robustness to stochastic systems, 
showing that this naturally leads to a distribution of robustness degrees. By discussing 
three examples, we show how to approximate the distribution of the robustness degree 
and the average robustness. Secondly, we show how to exploit this notion to address the 
system design problem, where the goal is to optimise some control parameters of a stochastic 
model in order to maximise robustness of the desired specifications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Biological systems at the single cell level are inherently stochastic. Molecules inside cells perform random movements 
(random walk) and the reactions among them may occur when the probability of collision is high enough. The number 
of molecules of each species at each time point is therefore a random process: assuming instantaneous reactions, this 
process can be modelled as a Markovian (i.e. memoryless) discrete state, continuous time process. When the number of 
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molecules of each species involved is large, so that many reactions happen in any small interval of time, stochastic effects 
can be neglected. However, if the concentration of the molecules (of at least some of the species) is low the stochasticity 
plays an important role and must be taken into account [1]. Stochastic models such as Continuous-Time Markov Chains 
(CTMC) [2] and Stochastic Hybrid Automata [3] are particularly powerful and suitable formalisms to model and to reason 
about biological systems defined as stochastic systems over time.

A classical question in formal modelling is to calculate the probability that a behavioural property, expressed in tem-
poral logic, may occur in a given stochastic process, with specified parameters. Probabilistic Model Checking [4,5] (PMC) is a 
well-established verification technique that provides a quantitative answer to such a question. The algorithm used to cal-
culate this probability [6] produces the exact solution, as it operates directly on the structure of the Markov chain. Despite 
the success and the importance of PMC, this technique suffers some computational limitations, either due to state space 
explosion or to the difficulty (impossibility) in checking analytically formulae in specific logics, like Metric Temporal Logic 
(MTL) [5,7]. Furthermore, PMC provides only a quantitative measure of the satisfiability (yes/no answer) of a temporal logic 
specification (i.e. the probability of the property being true).

However, especially when we deal with stochastic models, the notion of satisfiability may be not enough to determine the 
capacity of a system to maintain a particular emergent behaviour unaffected by the uncertainty of the perturbations due to 
its stochastic nature or by possible small changes in the model parameters. A similar issue also arises when considering the 
satisfiability of a property by deterministic dynamical systems which may be subject to extrinsic noise or uncertainty in the 
parameter. To address this question in the deterministic case, researchers from the verification community have proposed 
several notions of temporal logic based robustness [8–10], providing suitable definitions of distance between a trajectory of a 
system and the behavioural property of interest, expressed in terms of a temporal logic formula. These effectively endow the 
logic of interest with quantitative semantics, allowing us to capture not only whether a property is satisfied but also how 
much it is satisfied. A similar notion of robustness for stochastic models would clearly be desirable but, to our knowledge, 
has not been formalised yet.

The contributions of this paper are twofold. First, we provide a simulation-based method to define a notion of robust 
satisfiability in stochastic models. Simulation-based approaches, such as statistical model checking [11], can be used to 
estimate for a stochastic model the robust satisfiability distribution for a given temporal logic formula, with a guarantee of 
asymptotic correctness. This distribution is the key to understand how the behaviour specified by the logic temporal formula 
is affected by the stochasticity of the system. In particular, in this paper we consider two indicators of this distribution: the 
average robustness and the conditional average robustness of a formula being true or false. We discuss how to compute the 
robust satisfiability distribution and its indicators on two biological examples. Secondly, we show how to exploit the average 
robustness to address the system design problem, where the goal is to optimise (few) control parameters of a stochastic model 
in order to maximise these indicators. The proposed approach takes advantage of Gaussian Process Upper Confidence Bound 
(GP-UCB) algorithm introduced in [12].

The paper is structured as follows: in Section 2 we introduce the background material. In Section 3 we discuss the 
robustness of stochastic models using the quantitative semantics of the Signal Temporal Logic (STL). In Section 4 we present 
some experimental results for the robustness of STL formulae for three stochastic models that we have chosen as our case 
studies: the Schlögl system, a Repressilator-like model of the circadian clock of Ostreococcus Tauri, and a Feed-Forward motif 
of a gene regulatory network. In Section 5 we show an application of the robust semantics to the system design problem. 
The related works and the final discussion are in Section 7.

2. Background

We now introduce some material needed in the rest of the paper. We start from a general definition of stochastic 
process, in order to fix the notation and introduce the space of trajectories of the system, which plays a central role in 
our approach. Then we instantiate this general framework in different ways, presenting Population Continuous Time Markov 
Chains, Stochastic Differential Equations and Stochastic Hybrid Systems, describing as these particular semantics may arise as 
models of biological systems. We then briefly introduce the Skorokhod metric, which endows the space of trajectories with 
a natural topology. At the end of the section, we introduce the Signal Temporal Logic, including its boolean and quantitative 
semantics.

2.1. Stochastic processes

Stochastic processes are useful mathematical constructs to describe the random evolution of a system in time. The 
following definition formalises the intuitive concept of random evolution.

Definition 1. Let (�, A, P ) be a probability space1 and E ⊆ R
n . A continuous time stochastic process with values in E is a 

collection of E-valued random variables X(t), indexed by t ∈ [0, ∞) and defined on the same probability space (�, A, P ).

1 Here � is the sample space, A is a sigma-algebra, and P a probability measure. See [13] for an introduction of measure and probability theory.
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In this paper, we will restrict our attention to the case where the sample space E is a subset of the m dimensional 
Euclidean space Rm . We will also in general assume that the process is Markovian, i.e. memoryless, although this assumption 
could be weakened to include processes for which efficient sampling algorithms exist (e.g. semi-Markov processes).

We will be particularly concerned with the trajectory-based view of stochastic processes, restricting to those processes 
whose trajectories are cadlag functions. A cadlag function f : [0, ∞) → E is a right continuous function having left limits for 
any t ∈ [0, ∞), i.e. f (t) = f (t+) and f (t−) exists for all t . Call D([0, ∞), E) the space of cadlag functions with values in E . 
Stochastic processes considered in this paper, including Continuous-Time Markov Chains, solutions of Stochastic Differential 
Equations, Stochastic Hybrid Systems, can be seen as random variables on the space D([0, ∞), E).

In the rest of the paper, we will adopt the following notational conventions: by x we denote an element of D([0, ∞), E), 
with x(t) representing the value of the cadlag function at time t . Stochastic processes, when seen as a random variable 
over D([0, ∞), E), are denoted by X, while X(t) denotes the E-valued random variable at time t . Points of E are instead 
indicated by d, d′ .

2.2. Markov population models

Biochemical and genetic networks can be represented as populations of interacting molecules. As the interactions are 
the results of random collisions between particles, the evolution of the number of particles of each time will be a random 
variable. Similar reasoning can be applied in other scientific domains, ranging from population dynamics in ecology to 
epidemiology. We can define a class of models, called population processes, which intuitively describe a system in which 
agents or objects of different kinds (e.g. molecules, individuals in a social network), and possibly with different internal 
states (e.g. being phosphorylated, being infected or not) interact together. In the simplest case, population processes can be 
described by Continuous Time Markov Chains (CTMC) [2], one of the simplest classes of stochastic processes. These CTMC 
can be described by a simple formalism, known as Population CTMC (PCTMC) or Markov Population Model [14], inspired by 
biochemical reaction networks.

A PCTMC is a tuple X = (X, E, R). The state of the system is described by a vector X = (X1, . . . , Xn) of n integer-valued 
random variables Xi , each counting the number of entities of a given class or species, with domain E ⊆ N

n . The dynamics 
of the system, instead, is specified by a set of m reactions or transition classes R = {η1, . . . , ηm}, which can be seen as 
description of events changing the state of the system. Each reaction ηl is a rule of the form

r1 Xi1 + . . . + rk Xik → s1 X j1 + . . . + sh X jh ,

where Xia is a reactant and X jb is a product (by abusing the notation, we use the same letter for species and variables 
of X), and ri , s j are the stoichiometric coefficients, i.e. the amount of agents/entities consumed or produced by the reaction. 
Stoichiometric information of a reaction ηl can be condensed into an update vector vl , giving the net change in population 
variables due to ηl: vl = ∑

b≤h sb1 jb − ∑
a≤k ra1ia , where 1 j equals one in position j and zero elsewhere. Additionally, each 

reaction ηl has an associated rate function fl(X) giving the rate of the transition as a function of the global state of the 
system. Formally, reactions ηl are tuples ηl = (vl, fl(X)).

From a set of reactions R and species X, we can easily derive the formal representation of a CTMC in terms of its 
infinitesimal generator matrix, see for instance [14]. The state space of the CTMC is E (i.e. Nn or a proper subset, if any 
conservation law is in force). The infinitesimal generator matrix Q , instead, is defined by Q d,d′ = ∑

ηl∈R | d+vl=d′ fl(d), for 
any d 	= d′ , d, d′ ∈ E . Such CTMC can be simulated with standard algorithms, like SSA [15].

2.3. Fluid approximation

In many systems, stochasticity is attenuated in particular regimes. For example, the evolution of a biochemical reaction 
network becomes essentially deterministic when the number of particles in each species is large, so that the observed 
behaviour is effectively the average of many microscopic events. In these cases, it is often useful to approximate the system 
behaviour as deterministic. From a Markov population model, we can easily construct an alternative semantics in terms 
of Ordinary Differential Equations (ODE), assuming variables X to be continuous and interpreting each rate as a flow, thus 
obtaining the vector field

F (X) =
∑
ηl∈R

vl fl(X),

defining the ODE dX/dt = F (X).2 This equation, known as fluid approximation, can be shown to be a first order approximation 
of the CTMC average dynamics. It is possible to prove that, with a suitable rescaling of the variables (dividing by the system 
size, which for biochemical reactions is just the volume), the dynamics of the CTMC for large populations converge to the 
solution of this ODE (see [14] for a detailed discussion of such limit results).

2 The use of X to denote a deterministic process is justifiable if we see the solution of the ODE as a degenerate random process, having delta-Dirac 
distributions at each time point, see for instance [16].
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2.4. Stochastic hybrid automata

Fluid approximations are only justified when all chemical species in a biochemical network are present at high concen-
trations. This is often problematic when modelling genetic networks in a single cell: genes are normally present at very 
low copy numbers in cells, and their state can be usefully described as small finite state machines [17], i.e. as entities with 
a small number of internal states (e.g. free state, bound by a repressor molecule, etc). On the other hand, gene products 
(mRNAs and proteins) can have very high counts, so that modelling the genetic network as a PCTMC may incur significant 
computational costs. In these cases, a better strategy is to approximate only some variables as continuous, keeping discrete 
the others. This reflects in the dynamics: some reactions will be converted into flows (generally those modifying only con-
tinuous variables), while the others will remain stochastic discrete events. This gives rise to a model that can be expressed 
in terms of a class of Stochastic Hybrid Automata (SHA, [17]) known as Piecewise-Deterministic Markov Processes [16].

More specifically, the SHA so obtained have discrete modes identified by the value of discrete variables. In between 
discrete transitions, the system evolves following the solution of the differential equation, whose vector field is mode-
dependent (via the value of discrete variables). Discrete jumps happen at exponentially distributed random times, at a 
non-constant rate that can depend on the continuous variables. After each jump, the value of the discrete variables can 
change. Also continuous variables can be updated, even if we do not consider this possibility in this paper, see [17] for 
further details. Similarly to the fluid approximation case, we can see SHA models as the limit of CTMC, taking to the limit 
only the populations corresponding to continuous variables (under a suitable scaling of rates, see [18] for further details).

SHA can also be defined by assuming a stochastic continuous dynamics within each mode [19,20]. In this case, the 
system evolves in mode q by following a trajectory which is a solution of a stochastic differential equation of the form 
dX = Fq(X)dt +σ(X)dW, where σ(X) is a mode and state dependent Lipschitz continuous n × r diffusion matrix, Fq(X) is the 
mode dependent drift, and dW is an r × 1 vector of uncorrelated Wiener processes (white noise). Solutions of such an SDE 
can be simulated using the standard Euler–Maruyama algorithm [21].

2.5. Topology of the space of trajectories

The space D([0, ∞), E) can be given the structure of a metric space by the Skorokhod metric. The Skorokhod metric is 
first defined on compact time intervals [0, T ] and then extended over the whole positive time axis [0, ∞). Consider the 
uniform metric on the space D([0, T ], E), i.e. dU (x′, x) = sup0≤t≤T ‖x′(t) − x(t)‖. The uniform metric endows the space 
of cadlag functions with a topology, however it is easy to see that this is too restrictive for most purposes. Consider, for 
example, the cadlag function x defined to be 0 for t < t0, t0 > 0 and 1 for t ≥ t0, and the sequence of cadlag functions xn

defined to be 0 for t < t0 + 1
n and 1 otherwise. Then, for every t 	= 0, it is possible to find an N s.t. x(t) = xn(t) ∀n > N , 

i.e. the sequence converges point-wise almost everywhere. However, under the uniform topology dU (x, xn) = 1 ∀n, so the 
sequence does not converge as a sequence of functions. This is a general fact: if we have a sequence xn of cadlag functions, 
then they will converge to x in the uniform norm if and only if the discontinuous jumps of xn happen precisely at the same 
times as those of x (for n ≥ n0).

The idea behind the Skorokhod metric is to relax the uniform metric by allowing a small difference in these jump times 
by resynchronising them. Informally, if the uniform metric allows one to wiggle space a bit, the Skorokhod metric allows us 
also to wiggle time. To formalise this statement, let ω(t) : [0, T ] → [0, T ] be a time-wiggle function, i.e. a strictly increasing 
continuous function. Call IT the set of such functions. Then, the Skorokhod distance between x, y ∈ D([0, T ], E) is

dT (x,y) = inf
ω∈IT

max{ sup
t∈[0,T ]

‖ω(t) − t‖, sup
t∈[0,T ]

‖x(t) − y(ω(t))‖}. (2.1)

In our example above, one can simply choose the time wiggle function ω(t) = t + 1
n , so that the second term in the r.h.s. of 

Eq. (2.1) is always zero. The Skorokhod distance therefore evaluates to 1
n , and the sequence is seen to converge. The metric 

dT is extended to a metric on D([0, ∞), E) by discounting large times as follows:

d(x,y) =
∑
K∈N

2−K min{1,dK (x,y)}.

The Skorokhod metric defines a topology for which D([0, ∞), E) is complete and separable, i.e. it is a Polish space.3 See [22]
for a detailed introduction to the metric and its properties.

2.6. Signal temporal logic

Temporal logic [23] provides a very elegant framework to specify in a compact and formal way emergent behaviours in 
terms of time-dependent events. Among the myriads of temporal logic extensions available, Signal Temporal Logic [24] (STL) 

3 In fact, completeness requires one to work with an equivalent metric, but this is not relevant for the rest of the paper [22].
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is very suitable to characterise behavioural patterns in real-valued time series generated during the simulation of a dynam-
ical system. STL extends the dense-time semantics of Metric Interval Temporal Logic [25] (MITL), with a set of parametric 
numerical predicates playing the role of atomic propositions. STL provides two different semantics: a boolean semantics 
that returns yes/no depending if the observed trace satisfies or not the STL specification and a quantitative semantics that 
returns also a measure of the specification robustness for a given trace. Recently, Donzé et al. [26] proposed a very efficient 
monitoring algorithm for STL robustness, now implemented in the Breach [27] tool. The use of the sensitivity-based analysis 
guided by the measure of the robustness has been successfully applied in several domains ranging from analog circuits [28]
to systems biology [29,30], to study the parameter space and also to refine the uncertainty of the parameter sets. In the 
following, we recall the syntax and the quantitative semantics of STL [8] that will be used in the rest of the paper.

Definition 2 (STL syntax). The syntax of the STL is given by

ϕ :=  | μ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[a,b] ϕ2,

where  is a true formula, conjunction and negation are the standard boolean connectives, [a, b] is a dense-time interval 
with a < b and U[a,b] is the until operator. The atomic predicate μ :Rn → B is defined as μ(d) := (y(d) � 0), d ∈R

n , where 
y : Rn → R is sufficiently smooth real-valued function. The predicate μ can be lifted to an operation between signals,4

transforming a real valued signal into a boolean one, i.e. to a mapping μ : D([0, ∞), Rn) → D([0, ∞), B), by μ(x)(t) =
(y(x(t)) � 0). In this context, μ(x)(t) is known as a boolean signal, x(t) = (x1(t), ..., xn(t)) as the primary signal, and y(x(t))
as the secondary signal.

The (bounded) until operator ϕ1 U[a,b] ϕ2 requires ϕ1 to hold from now until, in a time between a and b time units, 
ϕ2 becomes true. The eventually operator F[a,b] and the always operator G[a,b] can be defined as usual: F[a,b]ϕ := U[a,b)ϕ , 
G[a,b]ϕ := ¬F[a,b]¬ϕ. We introduce now the boolean and the quantitative semantics for STL as in [24,8].

Definition 3 (STL boolean semantics). The boolean satisfaction relation |� for a STL formula ϕ on a temporal trace x is defined 
recursively by:

(x, t) |� 
(x, t) |� μ ⇔ μ(x(t)) is true

(x, t) |� ¬ϕ ⇔ (x, t) 	|� ϕ

(x, t) |� ϕ1 ∧ ϕ2 ⇔ (x, t) |� ϕ1 and (x, t) |� ϕ2

(x, t) |� ϕ1 U[a,b]ϕ2 ⇔ ∃t′ ∈ [t + a, t + b] s.t. (x, t′) |� ϕ2 and ∀t′′ ∈ [t, t′), (x, t′′) |� ϕ1

A trace x satisfies ϕ , denoted by x |� ϕ , if and only if (x, 0) |� ϕ .

Definition 4 (STL quantitative semantics). The quantitative satisfaction function ρ returns a value ρ(ϕ, x, t) ∈ R̃
5 quantifying 

the robustness degree (or satisfaction degree) of the property ϕ by the signal x at time t with respect to perturbations. It 
is defined recursively as follows:

ρ(,x, t) = +∞
ρ(μ,x, t) = y(x(t)) where μ ≡ y(x(t)) � 0

ρ(¬ϕ,x, t) = −ρ(ϕ,x, t)

ρ(ϕ1 ∧ ϕ2,x, t) = min(ρ(ϕ1,x, t),ρ(ϕ2,x, t))

ρ(ϕ1 U[a,b]ϕ2,x, t) = sup
t′∈t+[a,b]

(min(ρ(ϕ2,x, t′), inf
t′′∈[t,t′)

(ρ(ϕ1,x, t′′))))

Moreover, we let ρ(ϕ, x) := ρ(ϕ, x, 0).

The sign of ρ(ϕ, x) provides the link with the standard boolean semantics of [24]: ρ(ϕ, x) > 0 if and only if x |� ϕ , while 
ρ(ϕ, x) < 0 if and only if x 	|� ϕ . The case ρ(ϕ, x) = 0, instead, is a borderline case, and the truth of ϕ cannot be assessed 
from the robustness degree alone, see [8] for a deeper discussion of this issue. The absolute value of ρ(ϕ, x), instead, can 
be interpreted as a measure of the robustness of the satisfaction with respect to noise in signal x, measured in terms of 
the induced perturbation in the secondary signal. This means that if ρ(ϕ, x, t) = r then for every signal x′ for which every 
secondary signal satisfies maxt |y j(t) − y′

j(t)| < r, we have that x(t) |� ϕ if and only if x′(t) |� ϕ .

4 In the context of STL, to be consistent with terminology in the literature, we use the term signal to refer to cadlag functions.
5

R̃ =R ∪ {−∞, +∞}.
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Remark 5. We stress that the choice of the secondary signals y : Rn → R is an integral part of the definition of the STL 
formula, reflecting the intuition of the modeller and encoding the behaviour of interest. Different choices of secondary 
signals result in formulae expressing different behavioural properties, hence naturally in different robustness measures.

The robustness degree of Definition 4 has to be interpreted as a weight of “how much” a given model (with fixed initial 
conditions and parameters) satisfies a STL formula. More precisely, its absolute value represents the max distance of the 
signal x under consideration from the set of trajectories satisfying/violating the formula [9].

In this sense, this measure is different from the more common sensitivity-based notions of robustness, like those dis-
cussed in [31], measuring the size of a region in the parameter space in which the system behaviour is roughly constant. 
However, sensitivity analysis and its related techniques can be applied as well in combination with the robustness degree 
of Definition 4 as a discriminative function for interesting behavioural patterns to investigate. The definition of robustness
or robust satisfaction considered here was first proposed by Fainekos and Pappas in [9] and later extended by Donzé et al. 
in [8]. This is different from the satisfaction/violation degree or quantitative satisfaction defined by Rizk et al. in [10]. In the 
first case the robustness corresponds to the distance of a signal from a set of signals satisfying the same formula (the mini-
mal perturbation value that can violate the specification), while in the second case it provides a distance between a formula 
and a set of formulas satisfying the same signal [10].

3. Robustness of stochastic models

Consider a STL formula ϕ , with predicates interpreted over the state variables of a stochastic process X(t) with values 
in E ⊆ R

n . Recall that X(t) can be seen also as a random variable X on the space E-valued cadlag functions D([0, ∞), E), 
which in this section we denote by D, assuming the domain E to be fixed. The boolean semantics of ϕ is readily extended 
to stochastic models as customary, by measuring the probability of the set of the trajectories that satisfy the formula

P (ϕ) = P{x ∈ D | x |� ϕ}.
The rationale behind such definition is that a stochastic process defines a probability distribution on the space of tra-

jectories. In case of PCTMC, this is usually obtained by applying the cylindric construction [5], while for SHA or SDE more 
refined constructions are needed, see for instance [16,22]. Furthermore, the set of trajectories that satisfy/falsify a formula is 
a measurable set, so that we can safely talk about its probability. In order to extend this definition to the robustness score, 
it is convenient to think of the set of trajectories that satisfy ϕ as a measurable function Iϕ :D → {0, 1}, such that Iϕ(x) = 1
if and only if x |� ϕ . Then, we can define the random variable Iϕ(X) on {0, 1} induced by the stochastic process X via Iϕ as 
the Bernoulli random variable which is equal to 1 with probability P (ϕ). We can equivalently write:

P(Iϕ(X) = 1) = P({x ∈ D | Iϕ(x) = 1}) = P(I−1
ϕ (1))

We can extend the robustness degree to stochastic processes in the same way: given a trajectory x, we can compute its 
robustness degree according to Definition 4 and interpret ρ(ϕ, x) = ρ(ϕ, x, 0) as a functional Rϕ from the trajectories in 
D to R. To propagate the distribution of X to R, we need the to show that Rϕ is measurable (with respect to the Borel 
σ -algebra of the topology of D induced by the Skorokhod metric, see Section 2.1). This is shown in the following theorem, 
proved in Section A.1.

Theorem 6. For any STL formula ϕ , the functional Rϕ :D →R is measurable. �
In virtue of Theorem 6, Rϕ induces a real-valued random variable Rϕ = Rϕ(X) with probability distribution given by

P
(
Rϕ(X) ∈ [a,b]) = P (X ∈ {x ∈ D | ρ(ϕ,x,0) ∈ [a,b]})

Stated otherwise, if we apply the definition of robustness to a stochastic model, we obtain a distribution of robustness 
degrees. This distribution is much more informative than the standard satisfaction probability, because it tells us “how 
much” a formula is true. In this paper we are interested in some statistics of this distribution, specifically the average 
robustness degree E(Rϕ) and the conditional average robustness of a formula being true E(Rϕ | Rϕ > 0) or false E(Rϕ | Rϕ < 0). 
E(Rϕ) measures how strongly a formula is satisfied on average. The larger this number, the more strongly robust is the 
satisfaction of a formula. This number is generally correlated with the satisfaction probability. However, in some cases it is 
possible to observe a large average robustness even for a small probability of satisfaction. For this reason, the conditional 
averages E(Rϕ | Rϕ > 0) and E(Rϕ | Rϕ < 0) are better indicators of the intensity of satisfaction and violation of a STL 
formula w.r.t. a stochastic model.

These indices express how large is the robustness degree in average, given that the formula is satisfied or violated, 
respectively. The conditional averages of robustness are related to the average robustness degree by the equation

E(Rϕ) = P (ϕ)E(Rϕ | Rϕ > 0) + (1 − P (ϕ))E(Rϕ | Rϕ < 0)

which holds provided P(Rϕ = 0) is zero.
One goal of this paper is to investigate to what extent these three synthetic indices are good descriptors of the robustness 

distribution, and how they can be exploited to do parameter synthesis for stochastic models.
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Table 1
Biochemical reactions of the Schlögl model. Parameters are taken from [35].

Reaction Rate constant Init pop

A + 2X → 3X k1 = 3 · 10−7 X(0) = 247
3X → A + 2X k2 = 1 · 10−4 A(0) = 105

B → X k3 = 1 · 10−3 B(0) = 2 · 105

X → B k4 = 3.5

3.1. Continuity of Rϕ

An interesting question about the robustness degree Rϕ of a formula ϕ is whether it is continuous as a functional on 
the space of trajectories D = D([0, ∞), E), with respect to the topology induced by the Skorokhod metric, see Section 2.1. 
It turns out that Rϕ is not continuous on D, because D contains trajectories with discontinuous jumps, and the notion of 
metric convergence in D allows one to align close jumps (in time) between two trajectories. On the other hand, in the 
definition of the robustness degree ρ , there is no such a flexibility on the time bounds of the formula. This discrepancy 
results in the lack of continuity. The interested reader can find a counterexample in Appendix A.

Continuity, however, is a desirable feature, as it guarantees that small perturbations in the system trajectories will result 
in small perturbations in the robustness degree. Hence, a more precise characterisation of the continuity properties of Rϕ

on subspaces of D would be valuable, yet non-trivial. It is quite easy to assess that Rϕ is continuous on the subspace C ⊂D
of continuous trajectories, as in C the metric on D reduces to the standard supremum norm, for which Rϕ is known to be 
continuous [26]. We conjecture that Rϕ will be continuous also for most of the trajectories with jumps. The argument is 
as follows. Consider a simple formula ϕ = F[T1,T2] X ≥ 0. Then problems may arise for all those trajectories for which two 
discontinuous jumps happen at exactly T2, T1, or T2 − T1 time instants apart. We conjecture, although we still do not have 
a formal proof, that the functional Rϕ is continuous on all other trajectories. This soon implies that Rϕ is almost surely 
continuous with respect to any probability measure on D induced by a Continuous Time Markov Chain (or by other nicely 
behaved stochastic processes, like Feller processes [32], which include Stochastic Hybrid Automata without forced jumps 
[16]). By standard arguments about weak convergence of probability measures on D [22], this will guarantee that small 
perturbations of any CTMC model will result in small perturbations of the distribution Rϕ of the robustness degree.

The alternative would be to modify the definition of the robustness degree ρ to enforce continuity of Rϕ . This would 
require a notion of space-time robustness. In [8], the authors consider a definition which is based on the localisation of zeros 
(of the atomic predicates or of the robustness function). Unfortunately, this degree can be computed easily for piecewise 
linear continuous signals, but it is undecidable in general, even for continuous functions [33,34]). A possible alternative 
can be that of “blurring” the boundaries of the time intervals by a proper use of integrals. Investigating such a direction, 
however, is out of the scope of this paper.

4. Case studies

In this section, we investigate experimentally the notion of robust semantics of STL formulae for stochastic models. We 
will consider three systems: the Schlögl system [36], a simple set of biochemical reactions exhibiting a bistable behaviour, 
the Incoherent type 1 Feed-forward loops (I1-FFL) [37], a frequent motif in gene regulatory systems, and the Repressila-
tor [38–40], a synthetic biological clock implemented as a gene regulatory network. More specifically, we consider CTMC 
models of the Schlög system and the I1-FFL, and a hybrid model of the Repressilator, to illustrate the general applicability 
of the stochastic robust semantics introduced in Section 3.

4.1. Schlögl system

The Schlögl model is a simple biochemical network with four reactions, listed in Table 1. The rates of the reactions are 
computed according to the mass action principle for stochastic models [15]. Species A and B are considered to be present 
in large quantities, hence they are assumed to be constant and the system will be represented by only one variable, the 
concentration of the species X. The characteristic of this system is to have, for certain parameter values, like the one shown 
in Table 1, a bistable behaviour. More specifically, the reaction rate ODE system has two stable steady states, and for this 
model the trajectories of the stochastic system starting from a fixed initial state, X(0) = x0, can end up in one attractor or 
the other. The probability of choosing one stable state or the other depends on the position of x0 relative to the basin of 
attraction of the two equilibria. If we start close to its boundary, the bistable behaviour becomes evident, see Fig. 1(a). This 
model have been implemented and executed in MATLAB®.

We now consider the property of eventually ending up in one basin of attraction, using the following STL formula to 
express it

ϕ : F[0,T1]G[0,T2](X − kt ≥ 0), kt = 300. (4.2)

The exact meaning of the formula is: after at most T1 time units, the concentration of the species X stabilises to a value which 
remains above kt = 300 for at least T2 time units. From the atomic predicate μ(X) = X − kt ≥ 0, we can derive the secondary 
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Fig. 1. Simulation of the Schlögl model (100 runs), for parameters as in Table 1. The blue straight line is the value X = 300 (left). The distribution of 
robustness degree for the STL formula (4.2) with T1 = 10 and T2 = 15 time units (10 000 runs). The average robustness is −53.15 (vertical red line), the 
conditional averages of robustness are 169.89 and −239.52 (vertical green lines), and satisfaction probability is 0.4552 (right). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Satisfaction probability versus average robustness degree for varying (left) the threshold kt in the STL formula (4.2) and (right) the parameter k3. k3

was varied between 100 and 300 in steps of 10 units, while the threshold kt was varied between 50 and 600 in steps of 10.

signal y(x(t)) = x(t) − kt , where x(t) is the primary signal corresponding to a trajectory of the system (the variation in the 
concentration of X over the time).

As Fig. 1(a) shows, if the model is in the large equilibrium, then this property will be true, and false in the other 
case. If we estimate the probability of the formula statistically, for model parameters as in Table 1 and formula parameters 
T1 = 10 and T2 = 15, then we obtain the value p = 0.4583 (10 000 runs, error ±0.02 at 95% confidence level and execution 
time of 99.49 seconds). This raw number cannot be used to retrieve any information on the bistability of the system. Indeed, 
a system stabilising just above x(t) = kt = 300, and such that roughly 55% of its trajectories cross such threshold “frequently”, 
can satisfy the same formula with the same probability. The bimodal behaviour of the system becomes evident, instead, if 
we look at the distribution of the robustness degree of the formula, see Fig. 1(b). The figure shows also the conditional 
robustness averages of the formula ϕ in (4.2) being true or false that are 169.89 and −239.52, respectively. These two 
indicators estimate how robustly the system remains in the basin of attraction of each steady state. Hence, the robustness 
degree carries additional amount of information w.r.t. the satisfaction probability of a STL formula. We stress that we are 
not comparing the robustness degree with the probability distribution of the CTMC X(t): both the satisfaction probability of 
ϕ and its robustness are (unidimensional) quantities derived from X(t), which are easier to compute and visualise. In Fig. 2, 
we show two examples of the relationship between the average robustness and the satisfaction probability. We varied the 
threshold level kt in the formula (Fig. 2(a)), and the rate constant k3 (Fig. 2(b)), and then we plot the satisfaction probability 
versus the average robustness degree, estimating them statistically from 10 000 runs for each parameter combination. As we 
can see these two quantities seem to be correlated. By varying the threshold, the Pearson’s correlation coefficient between 
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Fig. 3. Simulation of the I1FFL model. Trajectory of XC , for parameters K AB = 1, K AC = 1, K BC = 0.17, αC = 1, βC = 1, αB = 1, βB = 1 and n = 2, X A = 1
and initial value xB (0) = 0, xC (0) = 0. The range of variables is expressed as a concentration (left). The distribution of the robustness degree for the formula 
(4.3) with θhigh = 0.7, Tr = 0.5, h = 1, Ts = 1.5, Toff = 10, T = 15, and θlow = 0.3 for 10 000 runs (right). The simulator for the model has been implemented 
in Java.

satisfaction probability and robustness degree is 0.8386, while the dependency, by visual examination of the data, seems 
to follow a sigmoid shaped curve. In the second case, instead, the correlation between satisfaction probability and average 
robustness degree is 0.9718, with an evident linear trend.

4.2. Incoherent type 1 feed-forward loops

The second example we discuss is a small frequent motif in genetic regulatory networks [37], known as the feed forward 
loop (FFL). FFL are composed by two genes, B and C , in which B regulates C and both are regulated by a third transcription 
factor, the product of gene A. The regulation is acyclic: there are no feedback loops. However, different roles played by 
A and B as regulators of the expression of B and C give rise to different behaviours, which are used within the cell to 
modulate the response to external (or internal) stimuli, changing the expression of A. In this paper, in particular, we discuss 
the incoherent type-1 FFL (I1FFL), according to the nomenclature of [37]. I1FFL is characterised by a topology with two parallel 
but competitive paths: A activates the production of both B and C , while B is a repressor of C . We consider the case of 
an “AND” logic gate in C , corresponding to the situation in which we have production of C if A is above its concentration 
threshold and B is not above its concentration threshold (i.e. B repression is not active).

The dynamics of this network can be understood in terms of an input/output relationship, where C is the output signal. 
In the presence of an external input signal, which corresponds to a high concentration of A, the production of B and C
is activated in parallel. B takes some time to accumulate and to cross the threshold to activate C repression. This effect 
translates in an initially high production of C followed by a decrease and a consequent stabilisation to a low steady state. 
This results in pulse-like response to the input signal, as can be seen in Fig. 3(a), left.

The network will be described by a Markov population process, in which activation and repression are modelled as Hill 
functions, while degradation is described in the standard mass action style [15]. The concentration X A is considered to be 
constant, as an input signal. More precisely, we have the following reactions:

B production: ∅ → B , at rate βB
Xn

A
K n

AB +Xn
A

;

B degradation: B → ∅, at rate αB XB ;

C production: ∅ → C , at rate βC
Xn

A
K n

AC +Xn
A

1
K n

BC +Xn
B

;

C degradation: C → ∅, at rate αC XC ;

In order to capture the pulse-like behaviour, we use the STL formula

ϕpulse = F[Tr ,Tr+h]G[0,Ts](XC ≥ θhigh) ∧ G[Toff ,T ](XC ≤ θlow). (4.3)

The formula ϕpulse requires the output signal to be above a high threshold θhigh at a certain time t ∈ [Tr, Tr + h] from the 
introduction of the input signal, and remains high for at least Ts time units. Furthermore, the formula imposes that the 
pulse has terminated after Toff units of time, so that the concentration of XC stabilises to a low value (less than θlow) for at 
least T time units.

In Fig. 3(b), we show the distribution of the robustness degree of the formula (see caption for parameters) with 10 000
simulations. The average robustness degree is of −0.2198 and is almost equal to the negative average robustness, −0.2204. 
Indeed, the formula is “almost always” false, as confirmed by the satisfaction probability degree that is 0.0014. Fig. 3(a) 
illustrates on the left that the negative robustness on a simulated trajectory is caused by the pulse peak, which does not 
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Fig. 4. The repressilator-like model of the O.Tauri circadian clock (left) is a cyclic negative-feedback loop composed of three repressor genes: TOC1, CCA1, 
and an unknown gene X . Oscillatory behaviour of the model (right), for model parameters taken from [19].

last enough time. In the next section we will show how to tackle the system design problem of this stochastic model by 
using the robustness degree to guide the parameter synthesis for which the pulse will become larger and longer.

4.3. Repressilator

The last case study is a genuine stochastic hybrid model of the Repressilator [38], a synthetic genetic clock composed of 
three genes expressing three transcription factors repressing each other in a cyclical fashion (see Fig. 4). Genetic networks 
like the Repressilator can also be found in actual biological systems. Here we consider the putative regulatory network of 
the Circadian Clock in Ostreococcus Tauri, an unicellular alga that is widely studied as a model organism. The model and 
parameters are taken from [19], where the authors start from experimental data and learn a stochastic hybrid model of the 
circadian clock network in O. Tauri, which is known to involve only two genes, expressing transcription factors TOC1 and 
CCA1. They conjecture the existence of a third regulatory protein X , similarly to the mechanism recently discovered for the 
circadian clock in Arabidopsis Taliana, forming a repression cycle as in Fig. 4.

This system is modelled by an SHA with three continuous variables, XTOC1, XCCA1, and Xx , and with eight discrete 
modes, corresponding to all possible combinations of active and inactive states of each involved gene. The dynamics of gene 
repression is modelled as a telegraph process, i.e. as a two states Markov model, with a phenomenological rate of repression 
of gene i (binding of the protein to the gene) equal to

fbind,i(X) = kpi exp(kei X j),

where X j is the repressor of gene i. The unbinding rate, instead, equals a constant: funbind,i(X) = kmi . The steady state 
distribution of the probability of gene i being active is a sigmoid (saturating) function of the repressor concentration. 
Production and degradation of protein i, instead, are modelled by stochastic differential equations of the form

dXi = (Aiμi + bi − λi Xi)dt + σdW ,

where μi denotes the state of gene i (with μi = 1 denoting the repressed state and μi = 0 the active state), bi is the 
basal production rate and Ai < 0 reduces it in case of repression, and λi is the degradation rate. The form of this model is 
particularly efficient to perform statistical inference of parameters in presence of observed data. Note also that the stochastic 
hybrid model we consider here is different from previous hybrid models of the repressilator [39,40], in that it assumes a 
different form for the rate of gene repression, and in that it models protein production and degradation by stochastic 
differential equations rather than ODEs. In Fig. 4(b), we show a simulation of the model, for the parameter values taken 
from [19], which exhibit sustained oscillations with a more or less stable period.

In order to specify the presence of oscillations, we use the STL formula

ψ = G[0,T ]((Xi > khigh) → F[T1,T1+h](Xi < klow)) ∧ G[0,T ]((Xi < klow)

→ F[T2,T2+h](Xi > khigh)) ∧ F[0,T ](Xi > khigh), (4.4)

expressing the fact that high values of Xi alternate to low values, with a period between T1 + T2 and T1 + T2 + 2h, where 
i is TOC1, CCA1 or X. In particular, we require that a high value of Xi (Xi > khigh) is followed within time [T1, T1 + h] by a 
low value of Xi , which is subsequently followed by a high value in a time between [T2, T2 + h]. The last part of the formula 
requires that the model indeed reaches a high value of Xi in order to trigger the chain of implications. The parameter 
h gives a value of the period stability, the higher the h, the more irregular is the period. As said before, Xi can be the 
concentration of one of the three proteins of the clock. In the next discussion, we focus on the unknown protein X .

Again, the robustness degree provides us a measure of the satisfaction/violation of the formula. An example is shown in 
Fig. 5(a) left, where we can see that the formula, for the parameters in the caption, tends to be false (the average robustness 
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Fig. 5. Robustness distribution for Formula (4.4) parameters klow = 0.14, khigh = 0.5, T1 = 800, T2 = 700, h = 350, T = 7000 and 1000 runs. The average 
robustness (red line) is −0.0151, conditional averages of robustness are −0.0183 and 0.0064 (green lines), and the estimated satisfaction probability is 
0.256 (left). Satisfaction probability versus average robustness. T1 was varied between 800 and 1100 in steps of 10 units (right). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

is negative and the satisfaction probability is 0.256). This, of course, may depend on the choice of the parameters, which do 
not properly capture the amplitude, the period, and the shape of the oscillations. For instance, a negative robustness value 
of δ can be obtained if, from a point in which Xi < klow , the system remains below khigh − δ for a whole (half) period of 
oscillation (which is constrained to be in [T2, T2 + h]). We will see in Section 5 how these parameters can be chosen in 
a principled way, taking inspiration from requirement mining [41,42]. In the same figure, we can also see the conditional 
average robustness, whose values are both close to the average robustness, suggesting that the low satisfaction probability 
is not very robust. In Fig. 5(b), we plot the average robustness against the satisfaction probability, varying the property 
parameter T1, showing once again the correlation between the two quantities. The dependency seems to be linear, with a 
Pearson correlation coefficient is 0.9841.

5. System design

We now discuss an application of the robust semantics to the system design problem. First we summarise the problem, 
then we illustrate the method to tackle it, describing in detail the Gaussian Processes and the GP-UCB algorithm. Finally, we 
present some experimental results.

The problem we want to tackle is the following:

Given a population (hybrid) model, depending on a set of parameters θ ∈ K , and a specification ϕ given by a STL formula, 
find the parameter combination θ∗ such that the system satisfies ϕ as robustly as possible (in expectation).

We will tackle this problem by:

• rephrasing it as a (non-linear, non-convex) optimisation problem;
• evaluating the function to optimise using statistical model checking at a few parameter values with a fixed number of 

runs, usually 100;
• solving the optimisation problem using an optimisation strategy for reinforcement learning, based on statistical emula-

tion and Gaussian processes regression (Gaussian Process – Upper Confidence Bound optimisation, GP-UCB [12]).

In certain cases, such as bistable systems, a large average robustness may not be the appropriate objective; in fact, for 
highly unbalanced robustness scores, a formula can have a high average robustness without having a high probability of 
being true. Therefore, one would like to modify the design problem to incorporate an additional constraint that the satis-
faction probability p of the formula be bounded below by a fixed q. This considerably complicates the problem: we are not 
aware of provably convergent non-convex constrained optimisation algorithms. Nevertheless, the problem can be approx-
imately solved using penalty terms to encode for probability constraints. More specifically, assuming we want to enforce 
the satisfaction probability to be at least q, we add a penalty term of the form α(q − p), if p < q, and 0 otherwise, where 
α < 0 controls the penalty intensity. A sufficiently high value of α (which can be chosen manually with a few trial runs) 
will ensure that the optimisation will satisfy the probability constraint.

5.1. Gaussian processes – upper confidence bound optimisation

Gaussian processes The key ingredient for the design problem is an efficient estimation of the unknown objective function, 
i.e. the average robustness as a function of the process kinetic parameters. Our simulation-based method provides us with 
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an efficient tool to estimate approximately the robustness value for a specific set of parameters; the question is therefore 
how to best estimate (and optimise) an unknown function from observations of its value at a finite set of input points. 
Function approximation is a central task in machine learning and statistics, where it is usually referred to as regression. The 
general regression task can be formulated as follows [43]: given a set of input-output pairs (θi, yi), i = 1, . . . , N (training 
data), with θi ∈ R

d and yi ∈ R, determine a function f : Rd → R s.t. f (θi) is optimally close to the target values yi (usually 
in terms of minimising a suitable loss function). Several methods exist for addressing this task; in this paper we adopt a 
Bayesian perspective: we specify a prior distribution over a suitable function space, and condition on the observed values 
to obtain a posterior estimation of the function value at all possible input points.

Probability distributions over spaces of functions are complex infinite dimensional objects; we can glean an intuition 
about their nature by considering a generative process in terms of basis functions. Let � = {ϕ1(θ), . . . , ϕN (θ)} be a set of 
fixed functions of the input variable θ , and define a function

f (θ) =
N∑

j=1

α jϕ j(θ) α j ∼ N (0,1)

by taking a linear combination of the basis functions with Gaussian distributed random coefficients. The value of the func-
tion f at any point is clearly a Gaussian distributed random variable (as it is a linear combination of Gaussian random 
variables); thus, the procedure outlined above is a generative construction providing a probability distribution over func-
tions. Nevertheless, the expressivity of this probability distribution is severely limited by the finite set of basis functions 
chosen; this problem can be obviated by choosing an infinite set of basis functions (and scaling appropriately the coeffi-
cients). In this way, we arrive at a Gaussian Process (GP), a popular stochastic process which is often employed in Bayesian 
non-parametric regression [44].

GPs are flexible non-parametric distributions over spaces of functions which can be used as prior distributions in a 
Bayesian framework, where the input-output pairs represent noisy observations of the unknown function. This enables a 
natural quantification of the uncertainty of the estimated function at every new input value; this uncertainty will play a 
central role in the optimal design strategy we propose in Section 5. The basis function construction described above is 
useful to grasp the essence of GPs, but not particularly suited for practical computation. One can instead equivalently define 
a Gaussian process in terms of its marginal distributions as follows [44]:

Definition 7. A Gaussian Process over a (portion of) Rd is a collection of random variables indexed by θ ∈ R
d such that every 

finite dimensional marginal distribution is multivariate normal. Furthermore, there exist two functions μ: Rd → R (mean 
function) and K : Rd × R

d → R (covariance function) such that the mean and covariance of the finite dimensional normal 
marginals is given by evaluating the mean and covariance functions at each point and each pair of points respectively.

We denote a sample from a GP with mean function μ and covariance function K as

f ∼ GP(μ, K ).

A common choice, which we will adhere to, is to use zero mean GPs with radial basis function (RBF) covariance

K (θ1, θ2) = A exp

[
−‖θ1 − θ2‖2

λ

]

where A and λ are hyper-parameters controlling the prior variance and autocorrelation distance of the process respectively. 
For further details about the definition of GPs and the RBF covariance we refer to [44].

Gaussian process regression Definition 7 characterises a GP in terms of its finite dimensional marginals; this is extremely 
useful because it gives an analytically tractable route to estimate a posterior distribution over the function value at a new 
point θnew . Denote again as (θi, yi), i = 1, .., N our observations, and let p(yi | f (θi)) denote observation error model. Then 
the basic rules of probability yield

p( f (θnew)|y1, . . . , yN) =
∫ N∏

i=1

df (θi)p( f (θnew), f (θ1), . . . , f (θN)|y1, . . . , yN) =

=
∫ N∏

i=1

df (θi)p( f (θnew)| f (θ1), . . . , f (θN))p( f (θ1), . . . , f (θN)|y1, . . . , yN) (5.5)

where in the last equality we have used the fact that the function value at the new point depends on the observations only 
through the function values at the training points (not on the actual observations).

A case of particular interest arises when the observation error model p(yi | f (θi)) = N (0, σ 2) is Gaussian itself. Then 
the integrand in Eq. (5.5) is Gaussian and can be computed analytically. Denote as K the matrix obtained evaluating the 
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Fig. 6. An example of Gaussian Process regression. The green dashed curve is the true functions, sampled noisily (σ 2 = 0.8) in few input points (red crosses). 
The solid blue curve is the GP-prediction function, obtained with a Gaussian kernel with λ = 0.8 and A = 1. The dashed-dotted black lines are the 95% 
confidence bounds of the predictive distribution.

covariance matrix at all pairs of training inputs, as k∗ the vector obtained evaluating the covariance matrix at the new 
input and at all training input, and as k∗∗ = K (θnew, θnew) the prior variance at the new input point. Using the formula for 
inverting block matrices, one can easily obtain the following closed form expression for the predicted mean and variance of 
the function at the new input point

E[ f (θnew)] = kT∗
(

K + σ 2 I
)−1

y

var( f (θnew) = k∗∗ − kT∗
(

K + σ 2 I
)−1

k∗. (5.6)

Few facts are remarkable about these equations: first of all, the expected value at a new point is a linear combination of 
the previous observations. Secondly, variance is always reduced by adding new observations. Finally, and most importantly, 
these equations provide an analytic functional form for the predictive mean and variance at a new input, in terms of a 
linear combination of basis functions centred at the training points. A visual example of Gaussian process regression can be 
found in Fig. 6.

In practice, the input-output pairs in a regression task are often different features of experimentally observed data points. 
In this paper, the output points correspond to true functional evaluations of an unknown (and analytically intractable) func-
tion of the inputs. In this case, the regression task is often given the special name of emulation in the statistics literature: 
the true (but unknown) function is assumed to be a draw from a GP, and the functional evaluations are used as observa-
tions to obtain a posterior estimate of the unknown function. This approach was initially introduced in order to perform 
sensitivity analysis for deterministic computer models in [45]; in that case, the function evaluations could be assumed to 
be noiseless (apart from numerical errors that were considered negligible in that paper). In our case, the function linking 
model parameters to average robustness cannot be computed, and we can only obtain a sampling approximation through 
a Statistical Model Checking procedure. This means that our function evaluations will be noisy; by virtue of the Central 
limit theorem we can assume that, provided sufficient samples were used for the SMC estimates, the noise in the observed 
robustness estimates will be approximately Gaussian.6 This therefore enables us to obtain an analytical estimate of the 
posterior process [44]. Furthermore, the SMC samples also allow us to estimate the (sample) variance in the average ro-
bustness at every sampled parameter value; this information can also be included leading us to a heteroscedastic (i.e. with 
non-identical noise) regression problem (which is however still analytically tractable).

Gaussian processes optimisation: the GP-UCB algorithm As we have seen, GP emulation provides a convenient way to explore 
approximately the average robustness of a stochastic process for different values of the model parameters. One could then 
be tempted to also use the emulated robustness profile for model design, i.e. find the optimum of the emulated function. 
This strategy, while appealing in its simplicity, is vulnerable to local optima: the emulated function is estimated based 
on relatively few function evaluation, so that, while the emulator typically provides a good approximation of the true 
function near the sampled points, regions of parameter space far from the sampled points may contain the true maximum 
undetected. Using the language of reinforcement learning, maximising the emulated function would privilege exploitation 
(i.e. using currently available information) at the expense of exploration. Obviously, given sufficient computational power, 

6 Note that here we approximate as a GP the average robustness score (or any other fitness score) as a function of parameters. We are not imposing any 
(Gaussian) approximation of the process itself.
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Table 2
Statistics of the results of ten experiments to optimise the parameter k3 in the range [50, 1000]. We report 
the median and the range of the optimum parameter, the average robustness, the probability satisfaction, 
the number of robustness function evaluations (n Rob. fcn evaluations), the total number of simulation 
runs, and the time, in seconds, of the robustness function evaluations (Rob. fcn eval. time) and the opti-
misation (Optim. time). The number of runs for each evaluation, i.e. each SMC, is 100.

k3 optimisation Median Range

Parameter 1000 [939.08, 1000]
Average robustness 350.6 [344.98, 353.74]
Probability satisfaction 1 1
n Rob. fcn evaluations 17 [16, 20]
n simulation runs 1700 [1600, 2000]
Rob. fcn eval. time (s) 22.565 [20.19,29.43]
Optim. time (s) 23.156 [20.58, 30.82]

one may consider sampling many parameter points so as to have sufficient coverage of the whole region of interest; this 
strategy is however bound to fail in even moderate dimensions due to the curse of dimensionality.

An elegant solution to the above conundrum can be obtained by also considering the uncertainty of the emulated function 
(which is also computed analytically in GP regression): intuitively, one should explore regions where the maximum could 
plausibly be, i.e. regions in parameter space where there is substantial posterior probability mass for the function to take 
a high value. We formalise these ideas in a recursive search rule, the so called Gaussian Process Upper Confidence Bound 
(GP-UCB) algorithm: assume we have computed the average robustness at N parameter values (so that we have N input 
output pairs). Let μN (θ) and νN (θ) be the mean and variance of the GP emulator at a given point in input space θ (recall 
that the marginal at any point will be Gaussian).7 We select the parameter value θ N+1 for the next function evaluation 
according to the following rule

θ N+1 = argmaxθ (μN(θ) + βN+1νN(θ)) (5.7)

where βN+1 is a parameter. Thus, the next point for exploration does not maximise the emulated function, but an upper 
confidence bound at a certain confidence level specified by the parameter βN+1 (the quantile can be obtained by applying 
the inverse probit transform to the parameter). Srinivas et al. [12] proved that this algorithm converges to the global 
maximum of the unknown function with high probability (which can be adjusted by varying the algorithm’s parameters). 
The primary difficulty in applying GP-UCB is that, in order to be able to apply the rule, the emulated function must be 
computed at a large number of points; while this is obviously not as onerous as evaluating the true unknown function 
(as the emulator is known analytically), it may still be problematic for high dimensional parameter spaces. Nevertheless, 
the algorithm can be applied effectively for moderate sized parameter spaces (of the order of 10 parameters), and modular 
construction may be used to extend to higher dimensional systems [46,47].

5.2. Experimental results

Here we present some experimental results. We considered three different design problems on the three case studies 
illustrated in Section 4. The optimisation algorithm and the experiments are implemented in Matlab exploiting the Breach 
toolbox [27] for the verification and a dedicated Java implementation for the SMC. All the experiments were run on a 
Macbook Pro, OS X 10.9.5, Intel Core i5 processor with 2.6 GHz, 8GB 1600 MHz memory.

Schlögl system We set up the experiment as follows. We ask to maximise the robustness degree of the formula (4.2)
optimising the parameter k3. We varied k3 uniformly in [50, 1000], fixing all other parameters to the values of Table 1. 
We ran the GP-UCB optimisation algorithm by first estimating the robustness degree and the satisfaction probability, using 
statistical model checking, for 15 points sampled randomly and uniformly from the parameter space with 100 runs for each 
sample, and then using the GP-UCB strategy to estimate the maximum of the upper bound function in a grid of 200 points. 
If in this grid a point is found with a larger value than those of the observation points, we compute the robustness also 
for this new point, and add it to the observations (thus changing the GP approximation). Termination happens when no 
improvement can be made after three grid resampling. Further integration of local maximisation can further improve the 
method.

In the experiment, repeated 10 times, we used a GP with radial basis kernel [43], with length scale fixed to 0.5 (after 
standardisation of the parameter range to [−1, 1]). The amplitude of the kernel was adaptively set to 60% of the difference 
between the max and the mean value of the robustness for the initial observations. The observation noise was experimen-
tally fixed to 1, by monitoring the average standard deviation at different random parameter combinations.

The median of the results are shown in Table 2. As we can see, the result of the optimisation suggests that the more 
robust system satisfying the specification (i.e. remaining as much as possible above the threshold 300 for a sufficiently 

7 We now denote the input as θ to emphasise that they are the parameters of a stochastic process.
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Fig. 7. The emulated robustness function in the optimisation of k3 (left). The distribution of the robustness score for k3 = 1000 and 10 000 runs; the average 
robustness (red line) is 351.1 and the satisfaction probability is 1. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 8. Simulation of the I1FFL model, for parameters kBC = 0.1732, αC = 0.3555, K AB = 1, K AC = 1, βC = 1, αB = 1, βB = 1 and n = 2, and initial 
value xA(0) = 1, xB (0) = 0, xC (0) = 0. The range of variables is expressed as a concentration (left). The robustness distribution of the formula (4.3) with 
θhigh = 0.7, Tr = 0.5, h = 1, Ts = 1.5, Toff = 10, T = 15, and θlow = 0.3 for 10 000 simulations (right).

long amount of time) is the one obtained for k3 = 997, 78. In Table 2 we report also the optimisation time, 24.99 seconds, 
which is almost entirely spent in evaluating the likelihood (24.34 seconds), i.e. in running the simulations of the system. In 
Fig. 7(a), we plot the emulation of the robustness function obtained in the last iteration of one of the 10 experiments. We 
can see also from here that the optimum value of k3 (the value that maximise the emulation function and the robustness 
degree) is 1000. The result is confirmed by the computation of the robustness distribution via SMC, Fig. 7(b): for k3 = 1000, 
the system becomes monostable, and X stably remains above 550 units (corresponding to an average robustness score above 
250).

Type 1 incoherent feed forward loop In the I1FFL example, we try to optimise model parameters to force a specific shape to 
the pulse, namely a duration of 1.5 time units with an amplitude larger than 0.7. This is obtained in the STL framework 
by assigning the following parameters to the formula (4.3): θhigh = 0.7, Tr = 0.5, h = 1, Ts = 1.5, Toff = 10, T = 15 and 
θlow = 0.3.

We considered two scenarios, assuming we can regulate the repression and degradation rates of the regulation of pro-
tein C . In the first case, we optimise only the degradation αC , while in the second case, we optimise simultaneously both 
K BC and αC . For each scenario, we use the robustness score of the STL formula (4.3).

The setting of the algorithm are similar to the ones for the Schlögl model, except for the hyper-parameters of the 
kernel and the observations noise. In this case, the hyper-parameters of the kernel have been identified relying on a model 
selection criterion, i.e. optimising the robustness function as computed from an initial batch of observations, cf. [44] for 
more details. We improve also the treatment of the observation noise by using a heteroscedastic noise model. The noise of 
the robustness function for each explored point of the parameter space is estimated by bootstrapping. Furthermore, in this 
set of experiments, we use 10 initial random samples for each parameter.

We ran the optimisation algorithm 10 times. The results are reported in Fig. 8 and Table 3. As we can see, the algorithm 
returns a precise value in one dimension, while it tends to be more erratic when searching the two dimensional space. This 
is typically a sign of uncertainty in the identification of parameters, meaning that there is some sort of dependency between 
the parameters we are exploring, resulting in a flat maximum or in a ridge of points more or less with the same robustness. 
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Table 3
Statistics of the results of 10 experiments to optimise the parameter αC in the range [0.035, 3.5] and simultaneously both αC in the same range and 
the parameter K BC in the range [0.017,1.7]. We report the median and the range of the optimal parameter, the average robustness, the probability sat-
isfaction, the number of robustness function evaluations (n rob. fcn evaluations), the total number of simulation runs, and the time, in seconds, of the 
robustness function evaluations (Rob. fcn eval. time) and the optimisation (Optim. time). The number of runs for each function evaluation, i.e. the number 
of simulations for SMC, is 100.

αC , K BC optimisation αC αC , K BC

Median Range Median Range

Parameter 0.3759 [0.3703, 0.4038] 0.3812, 0.1742 [0.3183, 0.4806], [0.1556, 0.1899]
Average robustness 0.1239 [0.1187, 0.1358] 0.1270 [0.1186, 0.1352]
Probability satisfaction 0.942 [0.899, 0.999] 0.973 [0.897, 0.989]
n rob. fcn evaluations 22 [17, 23] 58 [55, 62]
n simulation runs 2200 [1700, 2300] 580 [5500, 5800]
Rob. fcn eval. time (s) 28.38 [21.22, 30.83] 81.69 [77.59, 89.77]
Optim. time (s) 30.42 [22.17, 33.36] 108.98 [99.73, 129.91]

Fig. 9. Part of the emulated robustness function in the optimisation of αC and K BC for the I1FFL example. The colour corresponds to the value of the 
average robustness in agreement with the legend on the right of the plot. (For interpretation of the references to colour in this figure, the reader is referred 
to the web version of this article.)

This is confirmed in Fig. 9, where we plot the emulated function at the end of one optimisation. We can see that in almost 
all the region identified by the parameter range of Table 3 for αC and kBC , the robustness degree is similar (the dark red 
region); furthermore, the variability is more evident for the α parameter than the threshold concentration K BC . Finally, we 
can note from Table 3 that also in this case most of the computational cost is spent in the evaluation of the robustness 
function, i.e. in simulation of the model and statistical model checking.

Repressilator In this final scenario, we consider a different optimisation problem, in which we keep model parameters 
constant and we try to optimise the parameters of the formula to make the robustness score as large as possible. This is a 
version of the requirement mining problem [41], which can be seen as a sort of dual problem to system design, in which 
the goal is to learn the emergent behaviour of the model in terms of the most robustly satisfied formula (of fixed structure). 
Furthermore, the parametrisation of a formula is usually an underestimated problem, as the satisfaction/robustness heavily 
depends on these parameters. This problem has been partially tacked e.g. in [10,41] for deterministic models, but never for 
stochastic ones, to authors’ knowledge.

In particular, we consider Formula (4.4), and optimise the temporal delays T1 in the range [100, 1700] and T2 in the 
range [100, 1000]. This can be seen as an attempt to learn the best bounds on the oscillatory period, through the filter 
of the logical specification of oscillations of Formula (4.4). Inspecting the structure of the formula, we can observe that it 
is the conjunction of two temporal properties, one containing the parameter T1 (ϕ1 = G[0,T ]((Xi > khigh) → F[T1,T1+h](Xi <

klow))) and the other one containing the parameter T2 (ϕ2 = G[0,T ]((Xi < klow) → F[T2,T2+h](Xi > khigh))). We can exploit 
this structure and perform the optimisation of ϕ1 and ϕ2 separately, as model parameters are fixed and the total robustness 
degree is just the minimum of those of ϕ1 and ϕ2. In these formulas, we also keep T and h constant. T is related to the 
length of the signal we are observing, while h governs the length of the error we allow on the half period. In particular, 
observe that maximising h is meaningless: it is easy to show that the (average) robustness score will increase monotonically 
with h, so that the optimisation will always pick the upper bound. Hence, we fix h = 350. We decide to study the oscillation 
of the unknown gene X , i.e we set i = X .

The results of the optimisation of the two parameters are reported in Table 4, while in Fig. 10(a) we show the emu-
lated robustness function of T1. The optimisation algorithm was set as for the I1FFL case, save for the number of initial 
observations, set to 12. The parameters of the model are fixed to those shown in the caption of Fig. 4. As we can see from 
the robustness distribution in Fig. 10 right, we find parameters increasing the average robustness score of the formula to 
a positive value. From the emulated robustness function of parameter T1 (Fig. 10 left), we can note that T1 is identified 
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Table 4
Statistics of the results of 10 experiments to optimise the parameter T1 in the range [100, 1700] and of 10 experiments to optimise T2 in the range 
[100, 1000]. We report the median and the range of the optimal parameter, the average robustness, the probability satisfaction, the number of robustness 
function evaluations (n rob. fcn evaluations), the total number of simulation runs, and the time, in seconds, of the robustness function evaluations (Rob. fcn 
eval. time) and the optimisation (Optim. time). The number of runs for each evaluation, i.e. each SMC, is 100.

T1, T2 optimisation T1 T2

Median Range Median Range

Parameter 903.65 [895.89, 947.56] 675.28 [658.73, 688.11]
Average robustness 13.72 [11.45, 15.15] 0.0113 [0.0112, 0.0115]
Probability satisfaction 0.882 [0.874, 0.883] 0.689 [0.685, 0.695]
n rob. fcn evaluations 23 [22, 23] 20 [17, 22]
n simulation runs 2300 [2200, 2300] 2000 [1700, 22]
Rob. fcn eval. time (s) 2534 [2381, 2543] 2189 [1848, 2727]
Optim. time (s) 2537 [2385, 2546] 2189 [1849, 2729]

Fig. 10. The emulated robustness function in the optimisation of T1 (left). The distribution of the robustness score for T1 = 903.65 and T2 = 675.28. Average 
robustness is 0.0113 and estimated satisfaction probability is 0.689. (right)

precisely: the robustness function has a strict maximum. Finally, we observe that if we had taken the search domains of T1
or T2 to be much larger, we would have found additional maxima of similar height, corresponding to values of T1 increased 
by one period, two periods, and so on.

6. Related work

The system design problem consists in tuning properly the uncertain parameters of a biological model in order to re-
produce the behavioural properties observed in the experimental data. Temporal logic [23] is a very intuitive specification 
language to express formally the behavioural property emerging in a complex biological system. The success of this simple, 
but powerfully expressive formalism has led the computer aided verification community to introduce several important 
extensions of temporal logic, such as Metric Interval Temporal Logic [25], Signal Temporal Logic (STL) [24] and Temporal 
Frequency Logic [48], to deal with dense-time, real-valued signals and time-frequency patterns, respectively. In the last 
years, there was a great effort to develop new and efficient techniques to guide the system design of biological models with 
uncertain parameters, using the verification techniques available for the aforementioned behavioural specification languages.

For example, Batt et al. in [49] showed that the behaviour of a genetic regulatory network can be approximated with 
a piecewise multi-affine system. This class of models exhibits useful convexity properties which allows to compute a con-
servative finite-state automaton abstraction where the states represent the reachable sets in the form of hyper-rectangles 
in which the original state-space is partitioned and the transitions among the states characterise an over-approximation of 
the flows among the reachable sets. In a model with uncertain parameters, several different finite-state automata can be 
derived starting from different parameter sets. The model checking of a temporal logic formula guides the selection of the 
parameters sets for which the conservative abstraction and so the model will violate the problem of interest. Recently, other 
authors have extended this approach [50,51], by introducing an optimal approximation algorithm, to biological models with 
generic nonlinear differential equations such as the cardiac cell excitability [50] and the bone remodelling [51] case stud-
ies. However, this approach cannot be applied to stochastic models and the use of an over-approximation abstracts away 
important timing relations, resulting in the selection of very coarse parameter sets.

An alternative approach is to use under-approximation techniques such as simulation or sampling. Following this direc-
tion, in the last years, there was a great scientific effort to enrich the classical qualitative semantics of temporal logic or 
satisfiability (yes/no answer for the formula satisfaction of a trajectory) with more powerful and useful notions of quan-
titative semantics [52,9,8,10,53,54,70] (or robustness degree), providing a real value measuring the level of satisfaction or 
violation for a trajectory of the property of interest. Several tools, such as BIOCHAM [55], S-TaLiRo [53] and Breach [27], are 
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now available to perform robustness analysis on the time series collected in wet-lab experiments or produced by simulation-
based techniques. The robustness degree have been successfully employed in the analysis of ODE-based biological models, 
to tune the parameters discriminating the behaviours observed experimentally. In [30], Donzé et al. proposed a multi-step 
analysis, where they adopt STL to express dynamical properties and they use robustness and sensitivity analysis to sample 
efficiently the parameter space, searching for feasible regions in which the model exhibit a particular behaviour. In [47] the 
authors proposed a new approach, based on robustness degree, for the design of a synthetic biological circuit whose be-
haviour is specified in terms of signal temporal logic (STL) formulae. However, in all the aforementioned cases, stochasticity
is not taken into account. It is worth mentioning that all these simulation based techniques are based on the (approximate) 
solution of reachability problems for non-linear ODE systems, which can be tackled with Bayesian optimisation techniques 
presented in this paper [56].

With regard to the stochastic models, the satisfiability analysis has been considered as a discriminating criterion to tune 
the parameters in the design process using both simulation-based statistical approximated methods [6,57] and symbolic 
methods [58,59]. Lanotte et al. [58] showed that for parametric probabilistic transition systems (or discrete time Markov 
chains) the problem of finding (symbolically) an instance of parameter values for a reachability property to be satisfied is 
equivalent to the problem of finding the roots of a general polynomial and so it is generally undecidable if proper restrictions 
are not considered. In [60], the authors proposed a combined approach of a model checker together with a genetic algorithm 
to guide the parameter-estimation process by reducing the distance between the desired behaviour and the actual behaviour. 
The work [61] concerns with the parameter-synthesis problem, using symbolic methods, for parametric continuous time 
Markov chains and time-bounded properties. Also in this case the problem results to be generally undecidable and the 
authors proposed [61] an approximation method that provide a solution in most cases. Another related work in this sense 
is that of [62], where authors compute exactly upper and lower bounds on the satisfaction probability within a given region 
of the parameter space. In [63], instead, the authors propose a method to statistically estimate the satisfaction probability as 
a function of parameters based on Gaussian Process classification. All these approaches are designed to work with specific 
classes of stochastic models and to the best of our knowledge, we are not aware of approaches using the robustness degree.

7. Conclusion

Discussion In this paper we investigated a notion of robustness of behaviours of stochastic models, extending the robustness 
degree of STL formulae in a probabilistic setting. Discussing three case studies, a bistable model, the Repressilator, and a 
feed-forward-loop, we showed that the distribution of the robustness degree of a formula provides valuable information 
that is not captured by the satisfaction probability alone. Furthermore, its average can be used to enforce robust behaviours 
by optimising it.

Such optimisation is carried out using state-of-the-art optimisation algorithms coming from reinforcement learning, 
which emulate the true function from just few samples, and perform very well in a simulation based scenario. Remark-
ably, the proposed approach to evaluate robustness and to system design can be applied both to CTMC and to SHA models. 
We also briefly considered the problem of learning the most effective parameters of a given formula maximising the robust-
ness score similarly to [64,65]. This is a first step towards the ambitious goal of finding machine learning procedures to learn 
the emergent behaviours (described as temporal logic formulae) from models and from experimental data. Many problems 
need to be faced to achieve this goal, like how to learn formula structure, how to avoid overfitting (with respect to both 
formula structure and parameters), how to deal with the curse of dimensionality afflicting GP-UCB and other optimisation 
algorithms.

Future work The present work uses advanced machine learning concepts to address core problems in formal modelling; 
this is a relatively new line of work [66,57,56,63,67,64,65,68–70] which opens significant new avenues for further research. 
From the practical point of view, more extensive testing and an efficient and robust implementation (exploiting some of the 
possible parallelisms e.g. in SMC) will be important for the tool to be adopted. From the theoretical perspective, we plan 
to use multi-objective optimisation to find good parametrisation for conflicting objectives. Another interesting direction is 
to combine the design problem with the inference problem, which has recently been addressed for a number of contin-
uous time stochastic systems [19]; this would open the possibility of addressing the control problem for such systems, 
simultaneously inferring the state of the system and designing the optimal input to lead it to a desired state.
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Appendix A. Proofs

In this appendix, we present the proof of Theorem 6, about the measurability of the robustness score.
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A.1. Proof of Theorem 6

We first note here that a sequence of functions xn ∈ D([0, T ], E) converges to x ∈ D([0, T ], E) if and only if there is a 
sequence of time-wiggle functions ωn ∈ IT satisfying supt∈[0,T ] ‖ωn(t) − t‖ → 0 and supt∈[0,T ] ‖xn(t) − x(ωn(t))‖ → 0.

We also recall an important property of cadlag functions, which essentially allows us to approximate any cadlag function 
with a step function.

Lemma 8. Let x ∈ D([0, T ], E). For each ε > 0, there exists a finite grid T = {0 = t0 < t1 < t2 < . . . < tk = T } such that for each 
i = 0, . . . , k − 1

sup
t,s∈[ti ,ti+1)

‖x(t) − x(s)‖ < ε

Proof. See [22]. �
In order to prove Theorem 6, we need some preliminary results about measurability of the functions involved in the 

definition of the robustness score ρ . As we always deal with time bounded signals, we start by considering ρ , for a given 
formula ϕ , as a transducer of real-valued signals, i.e. as a functional from D([0, T ], E) to itself. To be more precise, we need 
to take into account that a STL formula looks Tϕ time units into the future,8 hence R̂ϕ : D([0, T ], E) → D([0, T − Tϕ], E)

(where R̂ denotes the functional between cadlag function spaces associated with the robustness score ρ).

Lemma 9. Consider the space D([0, T ], E) of cadlag functions. The following functionals are measurable, with respect to the Borel 
σ -algebra induced by the Skorokhod topology (or the product σ -algebra).

a) Forward time shifts: δa :D([0, T ], E) →D([0, T − T̂ ], E), defined by δa(x)(t) = x(t + a), for T̂ > a. Similarly for backward time 
shifts.

b) Pointwise maximum (and minimum): max :D([0, T ], E) ×D([0, T ], E) →D([0, T ], E).
c) Maximum (and minimum) over a dense interval in the future: SUP[T1,T2] : D([0, T ), E) → D([0, T − T2), E), defined9 as 

SUP[T1,T2](x)(t) = supτ∈t⊕[T1,T2] x(τ ), for 0 ≤ T1 < T2 < T fixed.

Proof. To prove points a) and b), we rely on the fact that the Borel σ -algebra in D([0, T ], E) is generated by the following 
collection of sets (forming a π -system): AT = {π−1

t1,...,tk
(h) | k ∈ N, h ∈ Ek, 0 ≤ t1 < . . . < tk ≤ T }, where πt1,...,tk is the 

projection on Ek , which is measurable [22].

a) We just need to prove that δ−1
a (π−1

t1,...,tk
(h)) is measurable for each π−1

t1,...,tk
(h) ∈ AT −T̂ . But δ−1

a (π−1
t1,...,tk

(h)) =
π−1

t1+a,...,tk+a(h).

b) Denote with b a boolean tuple of length k and with b̄ its element-wise boolean complement. Define π−1
t1,...,tk,b

(h) to 
be the set 

⋂
i:b[i] true π−1

ti
({hi}) ∩ ⋂

i:b[i] false π−1
ti

((−∞, hi)) which is measurable (by measurability of finite dimensional 
projections). It holds that

max−1(π−1
t1,...,tk

(h)) =
⋃

b

π−1
t1,...,tk,b

(h) × π−1
t1,...,tk,b̄

(h),

where the union is taken over all possible boolean tuples of length k. Hence, the set max−1(π−1
t1,...,tk

(h)) is measurable 
in the product σ -algebra.

c) We prove this only for the maximum, as the result for the minimum follows similarly.
For each n, define the finite grid Tn = {T1, T1 + δn, . . . , T2}, where δn = T2−T1

n . Furthermore, let

SUPn[T1,T2](x)(t) = max
τ∈t⊕Tn

x(τ ).

Fix x ∈ D([0, T ), E), and call gn(t) = SUPn[T1,T2](x)(t) and g(t) = SUP[T1,T2](x)(t). We will prove that gn → g in the 
Skorokhod metrics. By additionally showing the measurability of SUPn[T1,T2] for each n, we can rely on a standard result 
for measurable functions, i.e. that the pointwise limit of a sequence of measurable functions is measurable [13], to 
prove the measurability of SUP[T1,T2] .

8 Tϕ is defined recursively by Tμ = 0, Tϕ1∧ϕ2 = max{Tϕ1 , Tϕ2 }, T¬ϕ = Tϕ , and Tϕ1U[T1 ,T2 ]ϕ2 = max{Tϕ1 , Tϕ2 } + T2.
9 Recall that ⊕ is the Minkowski sum of two sets, A ⊕ B = {a + b | a ∈ A, b ∈ B}.
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Measurability of SUPn[T1,T2] Call xi(t) = x(t + i · δn) and observe that SUPn[T1,T2](x)(t) = max{x0(t), . . . , xn(t)}. The measur-
ability of SUPn[T1,T2] follows from points a) and b) above (extending point b to the maximum of n functions by induction 
is straightforward).

Convergence of gn to g Fix ε > 0 sufficiently small and use Lemma 8 for x on [0, T ] to find a grid Tx,ε = {t0, t1, . . . , th}
in [0, T ] satisfying the condition in the Lemma for the given ε. Fix a closed interval I ⊆ [0, T ] and consider any finite 
set T̂I that contains one point t̂ ∈ [t j, t j+1) ∩ I for each [t j, t j+1) ∩ I 	= ∅. By splitting the supremum in each [t j, t j+1), 
Lemma 8 implies that

sup
τ∈I

x(τ ) ≤ max
t̂∈T̂

x(t̂) + ε. (A.1)

Now let δTx,ε = mint j∈Tx,ε (t j+1 − t j) be the smallest step size of Tx,ε and choose n0 such that δn0 = T2−T1
n0

< δTx,ε /2. 
It then follows that t ⊕ Tn contains at least one point in each of the intervals [t j, t j+1) of Tx,ε , hence (A.1) implies 
(uniformly in t) that

g(t) − ε < gn(t) < g(t).

Concluding, we found n0 such that, for all n > n0, dT (gn, g) < ε, which implies the convergence of gn to g in 
D([0, T ], E). �

Lemma 10. Let ϕ be a STL formula. The functional R̂ϕ associated with it, R̂ϕ :D([0, T ], E) →D([0, T − Tϕ ], E), is measurable.

Proof. We proceed by structural induction on the formula ϕ .

Atomic predicate μ. Let μ be defined by the function y(x[t]), required to be at least continuous. As the pointwise extension 
to D([0, T ], E) of a continuous function is a continuous functional, R̂μ is measurable.

Negation ¬ϕ. R̂¬ϕ = −R̂ϕ is measurable by inductive hypothesis (and continuity of the function −x).
Conjunction ϕ1 ∧ ϕ2. R̂ϕ1∧ϕ2 = min{R̂ϕ1 , R̂ϕ2 }, which is measurable in virtue of Lemma 9b) and of the fact that measura-

bility is preserved when composing measurable functions.
Eventually F[T1,T2]ϕ. R̂F[T1,T2]ϕ = SUP[T1,T2](R̂ϕ) is measurable in virtue of the measurability of R̂ϕ (structural induction) 

and of Lemma 9c).
Globally G[T1,T2]ϕ. R̂G[T1,T2]ϕ = INF[T1,T2](R̂ϕ) is also measurable for the same reason above.

Until ϕ1U[T1,T2]ϕ2. By definition, R̂ϕ(x)(t) = R̂ϕ1U[T1,T2]ϕ2 (x)(t) = supt′∈t⊕[T1,T2]{min{R̂ϕ2 (x)(t′), infτ∈[t,t′] R̂ϕ2 (x)(τ )}}. Mea-
surability follows from a technical argument similar to the one of Lemma 9c), combined with the measurability of 
R̂ϕ1 (x) and R̂ϕ2 (x) by inductive hypothesis. More specifically, we need to construct a sequence of convergent approxi-
mations Rn(x)(t) of R̂ϕ1U[T1,T2]ϕ2 (x)(t), computed on a discrete grid that shifts with t and t′ . The discrete grids, like in 
Lemma 9c), have to be independent from the specific x, while the convergence must be uniform in t , but it can depend 
on x (we need to prove only pointwise convergence).
More specifically, let Tn = {T1, T1 + δn, . . . , T2} for δn = (T2 − T1)/n, and Tn

1 = {0, δ1
n , . . . , T2}, for δ1

n = T2/n1 ≤ δn . Then 
the finite approximation of R̂ϕ(x)(t) is Rn(x)(t) = maxt′∈An {min{R̂ϕ2(x)(t′), minτ∈Bn R̂ϕ2 (x)(τ )}}, with An = t ⊕ T n and 
Bn = (t ⊕ T

n
1 ∪ t � T

n
1) ∩ [t, t′]. The definition of Bn keeps into account the fact that both t and t′ can vary, and it is 

needed to ensure that there is an n0 such that, for n ≥ n0 we find for any t, t′ points of Bn in a fixed but arbitrary finite 
partition of [0, T ]. The measurability of Rn as a functional follows from similar arguments than those in Lemma 9c).
Now, fix ε > 0 and an element x in D([0, T ], E). Construct a finite partitioning Tx,ε of [0, T ] such that Lemma 8 is 
satisfied both for R̂ϕ1 (x) and R̂ϕ2 (x) for ε/2. Then it is easy to check that, if n is such that δn is smaller than half the 
step δTx,ε = mint j∈Tx,ε (t j+1 − t j) of Tx,ε , then An and Bn contain points of each interval of Tx,ε , so that the minimum 
approximates the infimum with an error bounded by ε/2 for each t and t′ , and the maximum cumulates another ε/2
approximation error with respect to the supremum. It follows that the distance between Rn(x)(t) and R̂ϕ(x)(t) is no 
more than ε, uniformly in t , showing the convergence of the approximation in the Skorokhod metric. �

We can finally prove Theorem 6, which we report here for convenience. Recall that Rϕ : D([0, T ], E) → R is defined by 
Rϕ(x) = ρ(ϕ, x, 0). Given a formula ϕ , let D =D([0, T ], E) for some T > Tϕ .

Theorem 6. For any STL formula ϕ , the functional Rϕ :D →R is measurable.

Proof. The theorem follows form the fact that Rϕ = π0 ◦ R̂ϕ , i.e. it is the composition of the measurable functional R̂ϕ

(Lemma 10) with the measurable projection π0. �
Proposition 11. Let ϕ be a STL formula. The functional R̂ϕ : D([0, T ], E) → D([0, T − Tϕ ], E) is not continuous with respect to the 
Skorokhod topology.
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Proof. We provide a counterexample to continuity, by exhibiting a formula ϕ and a trajectory x ∈D([0, T ], E) such that R̂ϕ

is not continuous in x. Fix ϕ = F[1,2] X ≥ 0, where X is the only system variable. The trajectory x(t) we consider is equal 
to 1 for t ∈ [0, 1) ∪ [2, T ), and equal to 0 for t =∈ [1, 2). Let now xn(t) be equal to 1 for t ∈ [0, 1) ∪ [2 + εn, T ) and to 0 
for t =∈ [1, 2 + εn), where εn > 0 is a sequence such that εn → 0. We have that R̂ϕ(x) = y, with y the constant function 1, 
while R̂ϕ(xn) = yn , where yn(t) = 0 for t ∈ [0, εn) and yn(t) = 1 for t ≥ εn . It is easy to check that xn → x in the Skorokhod 
topology, using the sequence of time wiggle functions ωn such that ωn(2) = 2 + εn and ωn linear elsewhere. On the other 
hand yn does not converge to y, which proves the claim, as continuous functions send convergent sequences to convergent 
sequences. �
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