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Towards Model Checking of Implantable Cardioverter Defibrillators

Abstract
Ventricular Fibrillation is a disorganized electrical excitation of the heart that results in inadequate blood flow
to the body. It usually ends in death within a minute. A common way to treat the symptoms of fibrillation is to
implant a medical device, known as an Implantable Cardioverter Defibrillator (ICD), in the patient's body.
Model-based verification can supply rigorous proofs of safety and efficacy. In this paper, we build a hybrid
system model of the human heart+ICD closed loop, and show it to be a STORMED system, a class of o-
minimal hybrid systems that admit finite bisimulations. In general, it may not be possible to compute the
bisimulation. We show that approximate reachability can yield a finite simulation for STORMED systems, and
that certain compositions respect the STORMED property. The results of this paper are theoretical and
motivate the creation of concrete model checking procedures for STORMED systems.
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Houssam Abbas, Kuk Jin Jang, Zhihao Jiang, Rahul Mangharam
Department of Electrical and Systems Engineering
University of Pennsylvania, Philadelphia, PA, USA

{habbas, jangkj, zhihaoj, rahulm}@seas.upenn.edu

ABSTRACT
Ventricular Fibrillation is a disorganized electrical excita-
tion of the heart that results in inadequate blood flow to
the body. It usually ends in death within a minute. A com-
mon way to treat the symptoms of fibrillation is to implant
a medical device, known as an Implantable Cardioverter De-
fibrillator (ICD), in the patient’s body. Model-based verifi-
cation can supply rigorous proofs of safety and efficacy. In
this paper, we build a hybrid system model of the human
heart+ICD closed loop, and show it to be a STORMED sys-
tem, a class of o-minimal hybrid systems that admit finite
bisimulations. In general, it may not be possible to com-
pute the bisimulation. We show that approximate reacha-
bility can yield a finite simulation for STORMED systems,
and that certain compositions respect the STORMED prop-
erty. The results of this paper are theoretical and moti-
vate the creation of concrete model checking procedures for
STORMED systems.

1. INTRODUCTION
Implantable Cardioverter Defibrillators (ICDs) are life-

saving medical devices. An ICD is implanted under the
shoulder, and connects directly to the heart muscle though
two electrodes and continuously measures the heart’s rhythm
(Fig. 1). If it detects a potentially fatal accelerated rhythm
known as Ventricular Tachycardia (VT), the ICD delivers
a high-energy electric shock or sequence of pulses through
the electrodes to reset the heart’s electrical activity. With-
out this therapy, the VT can be fatal within seconds of on-
set. In the US alone, 10,000 people receive an ICD every
month. Studies have presented evidence that patients im-
planted with ICDs have a mortality rate reduced by up to
31%.

Unfortunately, ICDs suffer from a high rate of inappro-
priate therapy due to poor detection of the current rhythm
on the part of the ICD. In particular, a class of rhythms
known as SupraVentricular Tachycardias (SVTs) can fool
the detection algorithms. Inappropriate shocks increase pa-
tient stress, reduce their quality of life, and are linked to
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Figure 1: ICD connected to a human heart via two

electrodes. The ICD monitors three electrical signals

(known as electrograms) traversing the heart muscle.

increased morbidity. Depending on the particular ICD and
its settings, the rates of inappropriate therapy can range
from 46% to 62% of all delivered therapy episodes. Current
practice for ICD verification relies heavily on testing and
software cycle reviews. With the advent of computer models
of the human heart, Model-Based Design (MBD) can supply
rigorous evidence of safety and efficacy. This paper presents
hybrid system models of the human heart and of the com-
mon modules of ICDs currently on the market, and shows
that the closed loop formed by these models admits a finite
bisimulation. The objective is to develop model checkers for
ICDs to further their MBD process.

No work exists on ICD verification. Earlier work on veri-
fication of medical devices (formal or otherwise) focuses on
pacemakers, which measure the timing of heart events. ICD
algorithms are more complex than a pacemaker’s, because
an ICD also measures and processes the morphology of the
electrical signal to distinguish many types of arrhythmias.
This takes the model out of the realm of timed automata
and into hybrid automata proper. Previous work on bi-
ological hybrid and/or nonlinear systems uses approximate
reachability techniques to verify system invariants [7, 8], and
demonstrates success in parameter space exploration.

The first contribution of this paper is to develop a hybrid
system model of the heart and ICD measurement process
(Section 3), of the ICD sensing process (Section 4), and of
the algorithmic components of ICDs from most major man-
ufacturers on the market (Section 5, see Fig. 2). We show
that the composition of these three models admits a finite
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Figure 2: The whole heart is modeled as a 2D mesh of cells (Section 3). The ICD electrodes are shown in the right

atrium and ventricle. The electrogram signals measured through the electrodes are processed by the sensing module

(see Section 4). The detection algorithm determines the current rhythm using the processed signal (Section 5).

bisimulation. The models presented here are the first for-
malization of ICD operation. To establish this result we
use the theory of STORMED systems [15], a class of hybrid
systems that have finite bisimulations. Our second contri-
bution is two general results for STORMED systems. First
we prove that parallel compositions of STORMED systems
yield STORMED systems (Section 6). Secondly, we show
that any definable over-approximate reach tubes can replace
the exact trajectories of a STORMED system, yielding a
system that still admits a finite simulation (Section 7). All
proofs are in the online report [1].

2. HYBRID SYSTEMS AND SIMULATIONS

Definition 2.1. A hybrid automaton is a tuple

H = (X,L,H0, {f`}, Inv,E, {Rij}(i,j)∈E , {Gij}(i,j)∈E)

where X ⊂ Rn is the continuous state space equipped with
the Euclidian norm ‖ · ‖, L ⊂ N is a finite set of modes,
H0 ⊂ X ×L is an initial set, {f`}`∈L determine the contin-
uous evolutions with unique solutions, Inv : L→ 2X defines
the invariants for every mode, E ⊂ L2 is a set of discrete
transitions, Gij ⊂ X is guard set for the transitions (so H
transitions i → j when x ∈ Gij), Rij : X → X is an edge-
specific reset function.
Set H = L×X. Given (`, x0) ∈ H, the flow θ`(;x0) : R+ →
Rn is the solution to the IVP ẋ(t) = f`(x(t)), x(0) = x0.

The associated transition system is TH = (H,E ∪ {τ},−→
, H0) where H is the state set, E ∪ {τ} is the label set for

transitions, H0 is the set of initial states, and −→= (
⋃
e∈E

e−→
)∪ τ−→ where (i, x)

e−→ (j, y) iff e = (i, j), x ∈ Gij , y = Rij(x)

and (i, x)
τ−→ (j, y) iff i = j and there exists a flow θi(·;x)

of H and t ≥ 0 s.t. θi(t;x) = y and ∀t′ ≤ t, θi(t
′;x) ∈

Inv(i). Let ∼ be an equivalence relation on H and H/ ∼
the corresponding partition. Let Ft(H/ ∼) be the coarsest

bisimulation with respect to
τ−→1 respecting the partition

H/ ∼, and Fd(H/ ∼) := {(h1, h2) | (h1
e−→ h′1) =⇒ (∃e′ ∈

E, h′2 .h2
e′−→ h′2 ∧ h′1 ∼ h′2)} ∩H/ ∼ [15]. The iteration

W0 = Ft(H/ ∼), ∀i ≥ 0, Wi+1 = Ft(Fd(Wi)) (1)

computes a bisimulation of H. However it does not nec-
essarily terminate for hybrid systems because the system’s

1I.e., Ft only considers the continuous transition relation: it

is a bisimulation of T cH := (H/ ∼, {∗}, τ−→, H0/ ∼).

reach set might intersect a given block of H/ ∼ an infinite
number of times (see [11] for an example). The class of sys-
tems introduced in the next section has the property that
the iteration does terminate for it and returns a finite S.

Given a set of atomic propositions, if ∼ is s.t. η ∼ η′

iff both states satisfy exactly the same atomic propositions,
then model checking temporal logic properties can be done
on the finite bisimulation instead of the possibly infinite H.

2.1 O-minimality and STORMED systems
We give a very brief introduction to o-minimal structures.

A more detailed introduction can be found in [11] and ref-
erences therein. We are interested in sets and functions
in Rn that enjoy certain finiteness properties, called order-
minimal sets (o-minimal). These are defined inside struc-
tures A = (R, <,+,−, ·, exp, . . .). The subsets Y ⊂ Rn
we are interested in are those that are definable using first-
order formulas ϕ: Y = {(a1, . . . , an) ∈ Rn | ϕ(a1, . . . , an)}.
(First-order formulas use the boolean connectives and the
quantifiers ∃, ∀). The atomic propositions from which the
formulas are recursively built allow only the operations of
the structure A on the real variables and constants, and the
relations of A and equality. For example 2x − 3.6y < 3z
and x = y are valid atomic propositions of the structure
LR = (R, <,+,−, ·), while cosh(x) < 3z is not because cosh
is not in the structure. These structures are already suf-
ficient to describe a set of dynamics rich enough for our
purposes and for various classes of linear systems.

Definition 2.2. A theory of (R, . . .) is o-minimal if the
only definable subsets of R are finite unions of points and
(possibly unbounded) intervals. A function f : x 7→ f(x) is
o-minimal if its graph {(x, y) | y = f(x)} is a definable set.

We use the terms o-minimal and definable interchange-
ably, and they refer to Lexp = (R, <,+,−, ·, exp) which is
known to be o-minimal. The dot product between x, y ∈ Rn
is denoted x · y, and d(Y, S) = inf{‖y− s‖ | (y, s) ∈ Y × S}.

Definition 2.3. [15]. A STORMED hybrid system (SHS)
Σ is a tuple (H,A, φ, b−, b+, dmin, ε, ζ) where H is a hybrid
automaton, A is an o-minimal structure, dmin, ε, ζ are pos-
itive reals, b−, b+ ∈ R and φ ∈ X such that:
(S) The system is dmin-separable, meaning that for any
e = (`, `′) ∈ E and `′′ 6= `′,d(Re(G(`,`′)), G(`′,`′′)) > dmin

2

2The original definition of separability [15] required the
guards themselves to be separated, which is insufficient to
guarantee that if H flows, it flows a uniform minimum dis-



(T) The flows (i.e., the solutions of the ODEs) are Time-
Independent with the Semi-Group property (TISG), meaning
that for any ` ∈ L, x ∈ X, the flow θ` starting at (`, x) sat-
isfies: 1) θ`(0;x) = x, 2) for every t, t′ ≥ 0, θ`(t + t′;x) =
θ`(t

′; θ`(t;x))
(O) All the sets and functions of H are definable in the o-
minimal structure A
(RM) The resets and flows are monotonic with respect to
the same vector φ, meaning that
1) (Flow monotonicity) for all ` ∈ L, x ∈ X and t, τ ≥ 0,
φ · (θ`(t+ τ ;x)− θ`(t;x)) ≥ ε||θ`(t+ τ ;x)− θ`(t;x)||, and
2) (Reset monotonicity) for any edge (`, `′) ∈ E and any
x−, x+ ∈ X s.t. x+ = R`,`′(x

−),
1. if ` = `′, then either x− = x+ or φ · (x+ − x−) ≥ ζ
2. if ` 6= `′, then φ · (x+ − x−) ≥ ε||x+ − x−||
(ED) Ends are Delimited: for all e ∈ E we have φ · x ∈

(b−, b+) for all x ∈ Ge
Intuitively, the above conditions imply the trajectories

of the system always move a minimum distance along φ
whether flowing or jumping, which guarantees that no area
of the state space will be visited infinitely often. This is at
the root of the finiteness properties of STORMED systems.

Theorem 2.1. [15] Let H be a STORMED hybrid system,
and let P be an o-minimal partition of its hybrid state space.
Then H admits a finite bisimulation that respects P.

3. HEART MODEL
For the verification of ICDs, we adopt the cellular au-

tomata (CA)-based heart model developed in [14],[5]. This
model lies in-between high spatial fidelity but slow to com-
pute PDE-based whole heart models, and low spatial fidelity
but very fast-to-compute automata-based models [12]. Ionic
currents [9] and PDE-based models may be more accurate
but are not currently amenable to formal verification (how-
ever see [7] for reachability analysis of discretized PDEs).
CA-based models were used in [2] and [4]. This paper’s
model also has the important advantage of forming the ba-
sis of software used to train electrophysiologists, and allows
interactive simulation of surgical procedures like ablation
[13]. In particular, it can simulate tachycardias.

This paper’s automata: All hybrid automata in this
paper have the whole state space as invariants and transi-
tions are urgent (taken immediately when the guard is en-
abled). The electrogram (EGM) voltage signal s has upper
and lower bounds. We also observe that, as will be seen
in Section 5, i) while observing a rhythm, the ICD will al-
ways reach a decision of VT or SVT in finite time ii) at
which point it resets its controlled (software) variables so
new values are computed for the next arrhythmia episode.
So while the heart can beat indefinitely, for the purposes
of ICD verification, there’s a uniform upper bound on the
length of time of any execution. Let D ≥ 0 be this dura-
tion (D is on the order of 30sec depending on device set-
tings. More recent ICD models might wait for longer for
self-termination). Therefore, every mode of every automa-
ton in what follows has a transition to mode End in which

tance along φ. Indeed assume the guards are separated. If
x ∈ G(`,`′) and y = R(`,`′)(x), it can be that y ∈ G(`′,`′′)

and thus a jump happens, even though G(`,`′) and G(`′,`′′)

are separated. Therefore we need d(y,G`′,`′′) > dmin for
all y ∈ Re(Ge), which is the condition we use in Def. 2.3.
The properties of SHS, in particular the existence of finite
bisimulation, are therefore preserved by this change.

Phase 4
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ṫp = 0

V̇ (i, j) = d (d > 0)
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Figure 3: Hybrid model Hc of one cell of the heart
model. AP figure from [6]. Vth,2 > Vth, Vmax,2 < Vmax

time does not progress. We don’t show these transitions
in the automata figures of this paper to avoid congestion.

3.1 Cellular automata model
The heart has two upper chambers called the atria and

two lower chambers called the ventricles (Fig. 1) The syn-
chronized contractions of the heart are driven by electrical
activity. Under normal conditions, the SinoAtrial (SA) node
(a tissue in the right atrium) spontaneously depolarizes, pro-
ducing an electrical wave that propagates to the atria and
then down to the ventricles (Fig.2) In this model, the my-
ocardium (heart’s muscle) is treated as a 2D surface (so it
has no depth), and discretized into cells, which are simply
regions of the myocardium (Fig. 2). Thus we end up with
N2 cells in a square N -by-N grid. A cell’s voltage changes
in reaction to current flow from neighboring cells, and in re-
sponse to its own ion movements across the cell membrane.
This results in an Action Potential (AP).

Fig. 3 shows how the AP is generated by a given cell [10]:
in its quiescent mode (Phase 4), a cell (i, j) in the grid has
a cross-membrane voltage V (i, j, t) equal to Vmin < 0. As it
gathers charge, V (i, j, t) increases until it exceeds a thresh-
old voltage Vth. In Phase 0, the voltage then experiences a
very fast increase (Phase 0), called the upstroke, to a level
Vmax > 0, after which it decreases (Phase 1) to a plateau
(Phase 2). It stays at the plateau level for a certain amount
of time PD then decreases linearly to below Vth (Phase 3 -
ERP). Once below Vth it is said to be in the Relative Re-
fractory Period (Phase 3 - RRP) . In Phase 3 - RRP, the cell
can be depolarized a second time, albeit at a higher thresh-
old Vth,2, slower and to a lower plateau level Vmax,2 < Vmax
(Upstroke 2). Otherwise, when the voltage reaches Vmin
again, the cell enters the quiescent stage again. This model
is suitable for both pacemaker and non-pacemaker cells, the
main differences being in the duration of the plateau (vir-
tually non-existent for pacemaker cells), and the duration
of phases 0 and 4 (both are shorter for pacemaker cells).
In Fig. 3, V (i, j) ∈ R denotes the voltage in cell (i, j) of

the grid, and V = (V (1, 1), . . . , V (N,N))T in RN
2

groups
the cross-membrane voltages of all cells in the heart. The
whole heart model HCA is the parallel composition of these
N2 single-cell models. The (i, j)th cell’s voltage at time t
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ṫp = 0

˙Th = 0
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in Phase 4 depends on that of its neighbors and its own as
follows [14]

V̇ (i, j, t) =
[V (i− 1, j, t) + V (i+ 1, j, t)− 2V (i, j, t)]

Rh(i, j)

+
[V (i, j − 1, t) + V (i, j + 1, t)− 2V (i, j, t)]

Rv(i, j)

= a(i, j)TV (t), a(i, j) ∈ RN
2

(2)

where Rh, Rv are conduction constants that can vary across
the myocardium. Thus V evolves according to a linear ODE
V̇ = AV where A is the matrix whose rows are the a(i, j).
The two states t and tp are clocks. Clock tp keeps track of
the value of the last discrete jump. We will use this arrange-
ment in all our models: it avoids resetting the clocks which
preserves Reset Monotonicity.

ICDs observe the electrical activity through three channels
(Fig. 1). Each signal is called an electrogram (EGM) signal.
The signal read on a channel is given by [5]:

s(t) =
1

K

∑
i,j

(
1

||pi,j − p0||
− 1

||pi,j − p1||

)
V̇ (i, j, t) (3)

where ‖·‖ is the Euclidian norm, p0 and p1 are the electrodes’
positions and pi,j is the position of the (i, j)th cell on the
2D myocardium (p0, p1, pi,j ∈ R2). Positions p0, p1 should
be chosen different from pi,j to avoid infinities.

Extensions. The Action Potential Duration (APD) resti-
tution mechanism as modeled in [14] can be included in this
model without changing its formal properties.

We now state the main result of this section.

Theorem 3.1. Let HCA be the whole heart cellular automa-
ton model obtained by parallel composition of N2 models Hc
with state vector x = [V, t, tp, s] ∈ RN

2

× R3. Assume that
all executions of the system have a duration of D ≥ 0. Then
HCA is STORMED.

4. ICD SENSING
Sensing is the process by which cardiac signals s mea-

sured through the leads of the ICD are converted to timing
events. The ICD declares events when the signal exceeds a
dynamically-adjusted threshold Th.

Fig. 4 shows the model HSense of the sensing algorithm,
and Fig. 5 illustrates its operation. The sensing takes place
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Figure 5: Example of dynamic threshold adjustment in

ICD sensing algorithm. The shown signal is rectified.

on the rectified EGM signal y = |s|. After an event is
declared at the current threshold value (y(t) ≥ Th(t) in
Fig. 4), the algorithm tracks the signal in order to measure
the next peak’s amplitude (Peak Tracking). For a duration
MinTP (min tracking period) the latest peak is saved in yM .
A variable f indicates that a peak was found. After a peak is
found (f == 1) and after the end of the tracking period, the
algorithm enters a fixed Blanking Period (Blanking), during
which additional events are ignored. On the transition to
Blanking, Th, Th0 and the exponential factor of decay eF
are updated. At the end of the blanking period, the algo-
rithm transitions to the Exponential Decay mode in which
Th decays exponentially from Th0 to a minimum level (Ex-
ponential Decay), and stays there for at least a sampling pe-
riod of MinDecP . Different manufacturers may use a step-
wise decay instead of exponential, but the principle is the
same. Local peak detection is modeled via the ẏ = 0∧ ÿ < 0
transition. While y = |s| is non-differentiable at 0, the peak
will occur away from 0, as shown in Fig. 5. States t, tp are
clocks and minTh and TC are constant parameters.

Theorem 4.1. HSense is STORMED.

5. ARRHYTHMIA DETECTION
A sustained Ventricular Tachycardia (VT) (or Ventricu-

lar Fibrillation (VF)) can be fatal whereas a SupraVentric-
ular Tachycardia (SVT) is usually not fatal, so the ICD’s
main task is to discriminate VT from SVT and deliver ther-
apy to the former only [3]. Most VT/SVT detection algo-
rithms found in ICDs today are composed of individual dis-
criminators. A discriminator is a software function whose
task is to decide whether the current arrhythmia is SVT
or VT. No one discriminator can fully distinguish between
SVT and VT. Thus a detection algorithm is often a decision
tree built using a number of discriminators running in par-
allel. We have modeled each discriminator in Boston Scien-
tific’s detection algorithm as a hybrid automaton. The ICD
system is thus HICD = HSense||HDetection−Algo where
HDetection−Algo is the parallel composition of the dis-
criminator automata. We now illustrate the models we
created with three discriminators and prove they are SHS.

5.1 Three Consecutive Fast Intervals
Our first module simply detects whether three consecutive

fast intervals have occurred, where ‘fast’ means the interval
length, measured between 2 consecutive peaks on the EGM
signal, is shorter than some pre-set amount. See Fig. 6.
States t and tp are clocks as before. The vector L3 is three-
dimensional, and stores the values of the last three intervals.
The event VEvent? is shorthand for the transition y(t) ≥ Th
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Figure 6: Three Consecutive Fast Intervals HTCFI
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Figure 7: EGMs of different origin have different mor-

phologies, while EGMs of similar origins have very sim-

ilar morphologies.

being taken by the HSense automaton. In other words, it
indicates a ventricular event. Then L3 gets reset to L+

3 =
(z1, z2, z3)+ := Circulate(L3, t− tp) where

L+
3 =

 z2
z3

t− tp

 =

0 1 0
0 0 1
0 0 0

L3 +

 0
0

t− tp

 (4)

Lemma 5.1. HTCFI is STORMED.

5.2 Vector Timing Correlation
It has been clinically observed that a depolarization wave

originating in the ventricles (as produced during VT for ex-
ample) will in general produce a different EGM morphology
than a wave originating in the atria (as produced during
SVT) [3]. See Fig. 7. A morphology discriminator mea-
sures the correlation between the morphology of the current
EGM and that of a stored template EGM acquired during
normal sinus rhythm. If the correlation is above a pre-set
threshold for a minimum number of beats, then this is an
indication that the current arrhythmia is supraventricular
in origin. Otherwise, it might be of ventricular origin.

Boston Scientific’s implementation of a morphology dis-
criminator is called Vector and Timing Correlation (VTC).
VTC first samples 8 fiducial points si, i = 1, . . . , 8 on the
current EGM s at pre-defined time instants. Let sm,i be
the corresponding points on the template EGM. A simple
0-shift correlation ρnew is calculated between the two se-
quences. If 3 out of the last 10 calculated correlation values
exceed the threshold, then SVT is decided and therapy is
withheld.

The system of Fig. 8 implements the VTC discriminator.
As before, t is a local clock. µ accumulates the values of the
current EGM, α accumulates the product sism,i, β accumu-
lates s2i . State w is an auxiliary state we need to establish
the STORMED property. ~ν is a 10D binary vector: νi = −1
if the ith correlation value fell below the threshold, and is
+1 otherwise. L3 is the state of HTCFI : the guard condi-
tion L3 ≤ th indicates that all its entries have values less
than the tachycardia threshold, which is when HV TC starts
computing. WindowEnds indicates the ‘end’ of an EGM,
measured as a window around the peak sensed by HSense.

Calculate VTC IDLE

ṫ = 1

µ̇ = ↵̇ = �̇ = 0

⇢̇ = 0

ẇ = ��, (� ⌧ 1)

WindowEnds & ⇢new < th?

~⌫  Circulate(~⌫, 1)

t, µ,↵,�  0, w  1

DurationEnds?

L3  th?

R1 R2i

R3

ṫ = 0

µ̇ = ↵̇ = �̇ = 0

⇢̇ = 0

ẇ = 0
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µ µ + s(t)

↵ ↵ + s(t)sm(t)

�  � + s(t)2
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t, µ,↵,�  0, w  1

Figure 8: VTC calculation. iTs is the sampling time
for the ith fiducial point, i = 1, . . . , 8. R21, . . . , R28 are
the corresponding resets. For clarity of the figure, 8
transitions are represented on the same edge R2i.
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Figure 9: Stability discriminator.

Lemma 5.2. HV TC is STORMED.

5.3 Stability discrimination
Stability refers to the variability of the peak-to-peak cycle

length. A rhythm with large variability (above a pre-defined
threshold) is said to be unstable. The Stability discriminator
is used to distinguish between atrial fibrillation, which is
usually unstable, and VT, which is usually stable.

The Stability discriminator shown in Fig. 9 simply cal-
culates the variance of the cycle length over a fixed period
called a Duration (measured in seconds). Let DL ≥ 0 be
the Duration length. The events DurationBegins? and
DurationEnds? indicate the transitions of a simple system
that measures the lapse of one Duration (not shown here).
State t is a clock, L1 accumulates the sum of interval lengths
(and will be used to compute the average length), L2 accu-
mulates the squares of interval lengths, and κ is a counter
that counts the number of accumulated beats. σ2 is assigned
the value of the variance given by 1

κ
[L2 − L2

1/κ]

Lemma 5.3. HStab is STORMED.
Now that each system was shown to be STORMED, it re-

mains to establish that their parallel composition is STORMED.
This result does not hold in general - Thm. 6.1 gives condi-
tions under which parallel composition respects the STORMED
property. Intuitively, we require that whenever a sub-collection
of the systems jumps, the remaining systems that did not
jump are separated from all of their respective guards by a
uniform distance. This is a requirement that can be shown
to hold for our systems by modeling various minimal delays
in the systems’ operation. We may now state:

Theorem 5.1. Consider the collection of systems HCA,



HICD = HSense||HDetection−Algo where the latter is the par-
allel composition of the discriminator systems. This collec-
tion satisfies the hypotheses of Thm. 6.1 (Section 6) and
therefore the parallel system HCA||HICD is STORMED and
has a finite bisimulation.

6. COMPOSING STORMED SYSTEMS
The results in this section and the next apply to SHS

in general, including those with time-unbounded operation.
We write [m] = {1, . . . ,m}. In this section given hybrid sys-
tems H1, . . . ,Hm, xi, Gi, θi, . . . etc refer to a state, guard,
flow . . . of system Hi. Recall that θ`(t;x) is the flow start-
ing at (`, x). The parallel composition H = H1|| . . . ||Hm
is defined in the usual way: H.X = ΠiX

i, H.L = ΠiL
i,

H.H0 = ΠiH
i
0, Inv(`) = ΠiInv

i(`i), and the flow θ`(x, t) =
[θ1`1(x1, t), . . . , θm`m(xm, t)]T . The system jumps if any of its
subsystems jumps. When a guard of a subsystem is satis-
fied, the state of that subsystem is reset according to its reset
map. The guards are disjoint to avoid non-determinism.

We show that the parallel composition of SHS is still a
SHS. In general H is not separable: indeed for any candi-
date value of dmin, one could find a transition (i, j) of H
due to, say, a jump of H1, s.t. at that moment x2 is closer
than dmin to one of its own guards, say G2

(j2,k2). This causes

H to further jump j → k without having traveled the req-
uisite minimum distance, thus violating the separability of
Rij(Gij) and Gjk. Therefore we need to impose an extra
condition on minimum separability across sub-systems.

Theorem 6.1. Let Σi = (Hi,A, φi, bi,−, bi,+, dimin, εi, ζi),
i = 1, . . . ,m be deterministic SHS defined using the same
underlying o-minimal structure, and where each state space
Xi is bounded by BXi .
Define parallel composition Σ = (H,A, φ, b−, b+, dmin, ε, ζ)
where H = H1|| . . . ||Hm, φ = (φ1, . . . , φm)T ∈ Rmn, bi,− =

infx∈X φ·x, bi,+ = supx∈X φ·x, ε = min(mini ε
i,mini

ζi

B
Xi

),

ζ = mini ζ
i and

dmin = min
I⊂[m]

(min
i∈I

dimin, min
i∈I,j∈[m]\I

dijmin)

Assume that the following Collection Separability condi-
tion holds: for all i, j ≤ m, 6= j there exists dijmin > 0 s.t.
if x ∈ X is in the reachable set of H and xi ∈ Gie ∧ xj /∈
Gje′ ∀e

′ ∈ Ej then d(xj , Gje′)) > dijmin for all e′ ∈ Ej where

Ej is the edge set of Σj and Gje′ is a guard of Σj on edge

e′ ∈ Ej. Then Σ is STORMED.

7. FINITE STORMED SIMULATION
In general it is not possible to compute the reach sets

required by the iteration (1) exactly unless the underlying
theory is decidable. The HICD||HCA closed loop is defin-
able in Lexp, and the latter is not known to be decidable.
Here we show that if an approximate reachability tool with
definable over-approximations is available for the continuous
dynamics, it can be used in (1) to yield a finite simulation.
Since we only have a simulation, counter-examples on the
abstraction should be validated in a CEGAR-like fashion.

Lemma 7.1. Let Σ = (H, . . .) be a SHS and ∼ an equiv-
alence relation on X. For any mode ` of H, the dynamical
system D with state space X = H.X and set-valued flow
Θ(t;x) = {y ∈ Rn | ||y − θ`(t;x)||2 ≤ ε2} admits a finite
simulation S` that respects ∼.

Let Fεt (P) := ∩`S`∈L where P = X/ ∼. Fεt refines all the
S`’s, and it is a finite simulation of H by itself w.r.t. the

continuous transition
τ−→.

Theorem 7.1. Let H be a STORMED hybrid system, and
P be a finite definable partition of its state space. Define

W0 = Fεt (P), ∀i ≥ 0,Wi+1 = Fεt (Fd(Wi)) (5)

Then there exists U ∈ N s.t. WU+1 = WU and Fεt (WU ) is a
simulation of H by itself.

This paper has presented the first formal models of ICD
operation and shown that they admit finite bisimulations by
proving new results in the theory of STORMED systems.
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