

ELECTROCARDIAC DEFIBRILLATION MODELING

Hyunkyung Lim Yue Wang, Wenjing Cun, Richard A. Gray and James Glimm

Department of Applied Math and Statistics Stony Brook University

04/14/2017

Motivation

— Cardiac Fatal Diseases

- Sudden cardiac death (SCD): unexpectedly, spontaneously death from heart arrest.
- Ventricular fibrillation (VF): uncoordinated contraction of the muscle of the ventricles.
- Fibrillation is a turbulent electrical state, causing death if not treated.

Normal sinus rhythm

Defibrillation — Treatment for fibrillation

- Strong electrical shock
- Electrical shock/heart boundaries
 - gives virtual electrodes
- Resets the electrical wave of the heart to its normal routine.

Goals

- Understand role of virtual electrodes in terminating fibrillation.
 - Defibrillation simulations
 - Analysis of filaments interacting with virtual electrodes
- LEAP as well as normal defibrillating voltages

Main Results

- Defibrillation electrical shock creates the virtual electrodes in realistic heart geometry.
- Virtual electrodes appears primarily near the epi/endocardium cardiac surfaces and large blood vessels play a secondary but still important. However, small blood vessels appear to have smaller role.
- Strong shock defibrillation extends polarized region to terminate fibrillation.
- LEAP defibrillation:
 - Extensive filament motion during LEAP as possible contributor to LEAP defibrillation.
- Sensitivity of the simulations to the conductivity values and blood vessel walls.

Resources for Computing

- LIred and Handy cluster (IACS at SBU)
 - 8 hours using 192 processors for 10ms defibrillation simulation
- Possible role of GPU speed up, collaborating with cyber heart community as chaste upgrade.

CyberCardia

Defibrillation Modeling

Chaste

- Bidomain with a Bath problem
- finite element method
- Two currents added to Chaste
 - Electroporation
 - Asymmetric response
- Blood vessel wall model (inter/outer wall)

Cardiac Model for Defibrillation Simulation — Bidomain Model

- Most complete computationally tractable cardiac tissue model.
- Explicit account for both extracellular and intracellular domains.
- Able to model unequal anisotropy ratios and defibrillation.

 ϕ_i, ϕ_e : intracellular, extracellular potential V_m : transmembrane voltage $V_m = \phi_i - \phi_e$

Cardiac Model for Defibrillation Simulation — Bidomain with a Conductive Bath

- Solution domain $\Omega = \mathbb{H} \cup \mathbb{T}$.
- Perfusing bath region \mathbb{T} .
- Bath potential ϕ_t in \mathbb{T}
- Electrodes act on the bath boundary only.

Oxford Rabbit Heart – High Resolution cyber Tetrahedral Mesh (40M) Reconstructed from MRI data

Blood vessels of Rabbit heart from Chaste tetrahedral mesh (left) vs. Rat vasculature (right)

Isotropic simulations with Rat and Rabbit

Defibrillation Simulation —Bidomain with Bath Problem

- Computational domain (2.4x2.4x3.2cm) in a model of cardiac tissue contained in a conductive bath.
- The color represents transmembrane voltage and the Initial voltage is -83 mV.
- Use of physiological parameters.
- Duration of shock: 1 ms
- Shock strength: 50V/cm
- The electrodes are placed at the bath boundary surfaces
 x = min x and x = max x.

Sensitivity to the blood vessel wall

— Virtual Electrodes by Externally Applied Electrical Shock

virtual electrodes near small blood vessels without vessel wall model

Sensitivity to Conductivity values

Motion of Filaments

Atrial fibrillation

Figure from Flavio's paper

Filaments (blue curves) dynamics interacting with blood vessels and heart surfaces (green dots) and so virtual electrodes.

Filament data from Rick and Pras

Four LEAP scenarios

- 1. Distributed sources for virtual electrodes
- 2. Dynamic motion of the filaments
- 3. Near virtual electrode scroll motion
- 4. Filament tension

Future Plans

- LEAP defibrillation studies to differentiate among multiple possible mechanisms
- Consider dog or pig models
 - Larger animals
 - Experimental data