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Improving Invariant Mining via Static Analysis
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This paper proposes the use of static analysis to improve the generation of invariants from test data extracted

from Simulink models. Previous work has shown the utility of such automatically generated invariants as a

means for updating and completing system specifications; they also are useful as a means of understanding

model behavior. This work shows how the scalability and accuracy of the data mining process can be dra-

matically improved by using information from data/control flow analysis to reduce the search space of the

invariant mining and to eliminate false positives. Comparative evaluations of the process show that the im-

provements significantly reduce execution time and memory consumption, thereby supporting the analysis

of more complex models, while also improving the accuracy of the generated invariants.
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1 INTRODUCTION

Accurate and complete information about the actual behavior of a software system is essential to
developers and users of the system. Developers need such information to make informed deci-
sions during development, maintenance, and evolution; users need similar information to inter-
act with the system properly and safely. Unfortunately, traditional manually maintained system
specification documents are often incomplete, inaccurate, or out-of-date, and they can impede the
development as well as the effective and safe usage of the system after it has been deployed.

To counteract this problem of misleading specifications, researchers have proposed the use of
invariant mining on run-time system artifacts [1, 5, 8]. The intuition is that these specifications can
convey information about system behavior at a much higher level than system code, while being
free from the inaccuracies that often plague developer-maintained specifications. These techniques
have been shown to yield useful information about systems, and even to reveal flaws in system
specifications. However, the underlying data-mining algorithms used by these tools typically are
computationally complex, and this introduces efficiency problems when the techniques are applied
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to larger artifacts. In addition, as artifacts grow in size the likelihood of spurious invariants also
increases, thereby degrading the accuracy of the generated information.

This paper shows how the problems of scalability and accuracy may be addressed using static
analysis. The particular artifacts we focus on are Simulink®1 models; such models are widely used
in industries such as automotive as a basis for the generation of embedded code. We show that by
adding simple data- and control flow analyses into our invariant-generation technique in [1] we
can dramatically improve both the efficiency of invariant mining and the accuracy of the invariants
that are produced.

The remainder of this paper is organized as follows. The next two sections review our invariant-
mining technique for Simulink in [1] and discuss issues that arise when it is applied to larger mod-
els. The section following then describes our static analyses and how they are intended to address
the scalability and accuracy problems in [1]. We then develop an experimental framework for
evaluating the new techniques using a corpus of 12 Simulink models of automotive and medical-
device control systems, and demonstrate statistically how the static analyses lead to faster run
times, lower memory usage, and better invariants. The final sections discuss threats to the validity
of our work, related work, conclusions and directions for future work.

2 BACKGROUND

This section reviews Simulink, our existing invariant-extraction framework for Simulink [1] and
the invariant mining algorithm that we employ to extract invariants.

2.1 Simulink

Simulink is a graphical block-diagram modeling language developed by The MathWorks Inc.
Simulink is used in conjunction with The MathWorks’ MATLAB® tool; Simulink models may also
contain submodels given as hierarchical state machines in the Stateflow® hierarchical notation.2

Because of its ability to model both discrete- and continuous-time dynamics, Simulink is widely
used in the automotive, ground transportation and aerospace industries to design control systems.
Discrete Simulink models are also often used as specifications for embedded control software,
and tools such as The MathWorks’ Embedded Coder and dSpace’s TargetLink can automatically
generate deployable C code from these models.

2.2 Invariants via Testing and Data Mining

Our invariant-generation approach [1] combines automated testing with association-rule min-

ing [3] to create invariants from Simulink models. The general techniques follows an iterative
test ->infer ->instrument ->retest cycle, and is depicted in Figure 1.

• Generate Test Data. Test data is automatically generated from system models using the
Reactis®3 automated coverage testing tool. Reactis actively strives to cover large portions of
the systems behavior by targeting different structural coverage metrics, including decision
coverage and modified condition/decision coverage (MC/DC), as well as Simulink-specific
coverage metrics such as conditional-subsystem coverage.

• Infer Invariants. Invariants are association rules, which take the form of implications
whose left-hand sides (LHSs) refer to inputs and internal variables and whose right-hand
sides (RHSs) are outputs of the system (e.g. input1=1 ∧ internal1=1 ⇒ output1=1). These
outputs may themselves be new values for the internal state variables. The invariants are

1Simulink® is a registered trademark of The MathWorks, Inc.
2MATLAB® and Stateflow® are registered trademarks of The MathWorks, Inc.
3Reactis® is a registered trademark of Reactive Systems, Inc.
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Fig. 1. Overview of the specification extraction approach.

inferred from the test data generated in the previous step using a modified Frequent Pattern
(FP)-Growth [13] algorithm from the Sequential Pattern Mining Framework (SPMF) [10]4.

• Instrument System. To validate the proposed invariants, the system models are instru-
mented with so-called monitor models that represent the proposed invariants. As their name
suggests, these monitor models observe the underlying system for any violations of the as-
sociated invariants. Reactis provides support for automating this instrumentation processes.
(In languages such as C/C++ this could be achieved via assert statements.)

• Retest. The purpose of the retesting phase is to check whether the inferred invariants can be
falsified with additional testing. Since the invariants are attached to the models as observers,
they are treated as additional coverage objectives by Reactis, which now actively tries to find
counterexamples to the proposed invariants. In the process it either disproves invariants,
or strengthens the confidence in them by creating additional test data that supports them.
In addition to validating existing invariants the additional test data can also uncover new
behaviors which lead to invariants that were missed in previous iterations. The test data
of all previous iterations is aggregated with the newly created test data and a new set of
invariants is inferred in each iteration. If the monitor model detected a counterexample,
then the corresponding invariant does not hold true for all test data and is automatically
discarded by the data miner. Thus, iterating the approach leads to a more accurate set of
invariants.

• Terminating the Process. The process terminates if there is no change in the set of in-
variants for N iterations, where N is a parameter set by the user.

This framework is designed to infer invariants of Simulink models, but it can be adapted for other
types of systems, provided the following requirements are met: Automated test generation technol-
ogy needs to be available; Observability of the inputs, internal states, and output values that should
be in invariants must be possible; Monitoring of the invariants during system execution, without
changing system behavior, must be possible.

Experiments have shown [1] that test generation technologies that actively try to invalidate
the proposed invariants tend to produce more accurate invariants. Furthermore, some of the op-
timizations introduced in this paper rely on the availability of data- and control flow information
between the variables.

4The Magnum Opus tool used originally in [1] is no longer available.
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Fig. 2. Example model illustrating a constellation that leads to spurious invariants.

2.3 Association Rule Mining via FP-Growth

In order to mine association rules from the test data, we employ the FP-Growth algorithm [13].
The algorithm works in two steps.

In the first step it identifies frequently co-occurring sets of items. Consider {in1=1, in2=1,

out1=1}, this is a set of 3 items or 3-item set. Each item set has a support value, that indicates
how often the items appear together in the data. For example if the item set had a support of 5
there would be five co-occurrences of in1=1, in1=1 and out1=1 in the test data. In order to identify
this item set the algorithm first identifies all frequent single items by counting the support of each
item in the test data. If the item occurs frequently enough (based on a user defined threshold) the
item is retained, otherwise it is eliminated. The algorithm then identifies the frequently occurring
2-item sets, 3-item sets to n-item sets (n in our case is bounded by the number of inputs, internal
variables and outputs). For information on how the FP-growth algorithm identifies these item-sets
efficiently we refer the reader to [13].

In the second step the algorithm then creates association rules by taking one item from the set
to be the RHS of the rule, with the remaining items in the set forming the LHS of the rule (e.g.
in1=1 ∧ in2=1⇒ out1=1). The algorithm then calculates how often the rule is true, which is the
so called confidence of the rule. If the confidence passes a given threshold (1.0 in our case, which
means there are no counterexamples) the rule is accepted.

3 SCALABILITY AND SPURIOUS INVARIANTS

A pilot study in [1] highlighted the utility of the invariant-generation approach discussed in the
previous section: missing pieces in a specification of production automotive control software were
uncovered. Other experiences with the tool similarly produced valuable insights into model be-
havior. However, in experiments we undertook on a variety of other automotive models we en-
countered some limitations of the basic framework. Two of these issues—Spurious Invariants and
Explosion of the Search Space—became the motivation for this work. We describe these below.

3.1 Spurious Invariants

While the retest cycle in [1] identifies many false positives, there are cases where the approach
returns an objectively true invariant (one that cannot be disproven by the data) that gives mis-
leading information about the behavior of the system. One of the reasons why this happens is that
the association-rule mining process only identifies statistical relationships, not causal dependen-
cies, between variables. As a side effect there are cases where the approach identifies invariants
between variables that have no actual causal dependency in the system itself; we refer to these
invariants as spurious. Figure 2 contains a simplified Simulink model that can give rise to spurious
invariants. The system has two inputs, two outputs and an internal clock. The clock is used for the
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initialization step of the system and ensures that Out1 is zero after the system has booted up. Note
that in our example input in2 is not connected to output out1; this is the intended functionality
based on the requirements of the system. In these types of scenarios the approach infers spurious
invariants relating values of in1 and out2, even though no connection exists between them. When
spurious invariants are possible because of inputs that are unconnected to outputs in this fashion,
they can overwhelm the actual invariants; in our experiments we observed ratios of actual invari-
ants to spurious invariants as high as 1:100 depending on the number of in and outputs of the
system. These spurious invariants make the analysis of the results much harder for the user and
slow down the test generator considerably since it must process a larger number of invariants.

3.2 Explosion of the Search Space

This problem occurs in larger models that have many inputs, internal variables, and outputs. It
leads to usage of large amounts of time and memory, and in our experiments even crashed due to
lack of memory on the 32GB machine used during our evaluation.

To understand the source of the problem, consider the FP-Growth algorithm that we introduced
in Section 2.3. In order to create association rules it has to find all possible frequent item sets in
the data, leading to a potentially very large search space which is exponential to the number of
unique items in the data. The general complexity of this problem is NP-hard but for special cases
(e.g. bounded minimum support) it has been shown to be in P [4]. To generate the item sets the
algorithm creates several tree structures called FP-Trees; the number of trees is also proportional to
the number of unique items in the test data. So the main driver of the performance (execution time
and memory consumption) of the algorithm is the number of unique items that it has to consider.
The frequent items in our data are based on the inputs, internal variables and outputs of the system
and their associated values from the test data, which means that with each additional variable that
we have to consider the unique items increases by the number of values that this variable can take.

Another factor increasing the number of item sets that we have to consider is the support set-
ting. The pruning of items that do not have enough support can reduce the search space greatly.
However, since we want to identify all invariants no matter how rare they are, we have to use a
very low minimum support threshold. Our evaluation shows that there is a big trade-off between
performance vs accuracy. One can greatly speed up the data-mining process and reduce memory
usage, but this is at the expense of missing invariants. Furthermore, without a low support thresh-
old there can be cases where the approach does not converge. It turns out that some invariants
might fall below the support threshold in one iteration, only to later reappear again due to the
way the test data changed between iterations. If the new test data in an iteration lifted the support
value for a previously dropped invariant over the threshold again it would reappear. This fluctua-
tion of invariants shows that, besides not finding all invariants, a support setting that is too high
can lead to non-convergence of our approach, since the accuracy of the set of invariants may not
be guaranteed to increase monotonically with the number of iterations.

3.3 Other Limitations

In addition to the above-mentioned shortcomings the approach only works with categorical vari-

ables. The regular association-rule-mining algorithm treats each numerical value of an integer
or floating point variable as a separate category. For example, it would create the invariants
speed=24.4⇒mode=off, speed=24.45⇒mode=off and so on. The validation step would then try to
find counterexamples to these rules creating more test data and the subsequent data mining step
would create even more invariants. This stops the approach from converging since it always can
find more invariants in each step. For this paper, we address this problem via user-supplied data
abstractions. Specifically, the user can supply information about data abstraction that the approach
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will apply before the data mining process is invoked. We do not address this further in this paper,
except in the future work section.

4 BETTER INVARIANTS VIA STATIC ANALYSIS

In this section we show how to address the problems of Spurious Invariants and the Explosion
of the Search Space using data- and control flow dependency information. This information will
allow us to eliminate spurious invariants and reduce the search space of the data mining process.

We examine two different uses of this information. The first approach introduces constraints in
the FP-Growth algorithm as described in [21]. This leads to fewer recursive calls, thereby reduc-
ing the search space. Furthermore, all invariants that are produced this way only entail variables
with actual causal dependencies, which will remove spurious invariants. The second approach
partitions the test case data in such a way that for each output variable there is one dataset that
only entails the inputs and internal variables that have a causal dependency to that output. The
data-mining algorithm is then executed separately for each of these datasets. This also reduces the
search space and removes the spurious invariants.

In the rest of this section we describe the static analyses and how the information is factored
into the data-mining process.

4.1 Dependency Analysis

Our approach to pruning the search space of the invariant mining process and identifying spuri-
ous invariants involves determining which inputs and internal variables can affect the values of
which outputs of a system. We compute this information by building a directed dependency graph

from the Simulink model. Each input into the system, each read of an internal system variable,
and each system output will be represented as a distinct vertex in this graph; computing causal
information for a given output just involves performing a reachability calculation on this graph
(e.g. using depth- or breadth-first search). The transformations discussed in this section are spe-
cific to Simulink models. However, the graph representation can be reused for other data-flow
languages for which such dependencies can be computed. The rest of this section describes how
this dependency graph is constructed for Simulink models.

Simulink models consist of blocks. Each block contains a collection of inputs and outputs to-
gether with logic describing how the block executes. Roughly speaking, the model of execution
for a block is as follows. Inputs to the block are read when they are available, after which the block
“fires” by executing its logic, thereby producing values on each of its outputs. Outputs of a block
may in turn be connected to inputs of another block, inducing as a result a dependency between
the blocks: the downstream block’s outputs will depend in part on the outputs produced by the
upstream block.

Simulink blocks may take different forms. So-called basic blocks are the smallest building blocks
of Simulink models. Many such blocks, such as the Sum block, compute functions over their inputs,
yielding results as outputs. Other blocks, such as Zero-Order Hold, have state that depends on
previous values provided as inputs. Similarly, Data Store Read blocks permit internal variables
created via Data Store Memory blocks to be read, while Data Store Write blocks allows these
variables to be modified. (In this paper, for simplicity we assume that any value written to a Data
Store is also output on some Outport. This simplifies our account of invariants as having “outputs”
on the RHS.) Still other blocks are called virtual, as they are primarily responsible for routing data
through a model. Examples of the latter include Inport and Outport blocks.

Other blocks take the form of subsystems, which contain submodels. The inputs and outputs of
a subsystem correspond to the top-level Inport and Outport blocks of its submodel. In addition,
certain subsystems also have special triggering inputs indicating when the model should, or should
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Fig. 3. Transforming a Simulink block into a dependency graph.

not, execute. In this regard, while Simulink is primarily a data-flow language, there are also control-
flow aspects to its operational semantics.

In addition to basic blocks and subsystems, Simulink also includes blocks that may be used to
include C code, or MATLAB code, or state machines in the Stateflow notation, within models. In
this paper we will not consider these blocks.

4.1.1 Dependency Graph Construction. Our goal is to build a directed graph whose vertices are
basic blocks as well as their outputs and inputs, and whose edges reflect data-flow / control-flow
dependencies. We describe this construction in stages, beginning with generic basic-block assem-
blages and then continuing with our treatment of certain specialized blocks, including subsystems.
Given space constraints, this discussion is necessarily abbreviated.

4.1.2 General Block Treatment. Dataflow between two basic Simulink blocks B1 and B2 is
treated as in Figure 3. In this case, we introduce a vertices for B1 and B2 into our dependency
graph, together with vertices for each output and input of the block. Outgoing edges in the figure
connect B1 to its outputs, while incoming edges connect B2 to its inputs. Finally, any connections
in the Simulink diagram between outputs of on block and inputs of another are added as directed
edges in the obvious fashion.

4.1.3 Virtual Blocks and Subsystems. Our dependency graph is intended to be a flattened repre-
sentation showing causal connections between basic non-virtual blocks, as well as top-level Inports
and Outports. The description below illustrates how we “translate away” subsystems and certain
virtual blocks. We focus in particular on the following four cases: From and GoTo blocks; Virtual

Subsystems; Conditional Subsystems; and If Else blocks. Graphical depictions of the corresponding
transformations are given in Figure 4. Other types of virtual blocks and subsystems are treated
similarly and are omitted.

GoTo/From. From and GoTo blocks (Example 1 in Figure 4) introduce virtual connections be-
tween blocks. The GoTo block GB1 and the From blocks FB1 and FB2 in the example contain the
tag [A]; this indicates that there are connections between the output of block B1 and the inputs of
B2 and B3. Our construction adds vertices for the GoTo/From blocks and directed edges from GoTo
blocks to corresponding From blocks.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 167. Publication date: September 2017.
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Fig. 4. Graph constructions for (1) Goto/From, (2) Subsystem, (3) Conditional Subsystems and (4) If blocks.

Subsystems. Subsystem blocks allow submodels to be embedded insider larger models while
hiding the complexity of the former. Data is transferred into and out of the subsystem block via
its submodel’s Inports and Outports. Example 2 in Figure 4 depicts our treatment of Subsystem
blocks. (The internal blocks of Subsystem SB1 are overlaid in the figure for illustration purposes.)
In the graph-construction process the Subsystem block in Simulink is omitted from the graph, but
submodel is retained. Edges are introduced between the inputs and of the subsystem and their
corresponding Inports and Outports from the submodel.

Conditional Subsystems. Some subsystem blocks (e.g. Action Subsystem, Triggered Subsystem)
have a control-flow component to their behavior in addition to the dataflow component present
in subsystems described above. Specifically, these subsystems contain action / trigger ports AP/TP ;
the subsystem is then only executed if the right trigger signal is supplied during run-time. (Trigger
signals can be evaluations of if/else statements or rising/falling edges of signals, for example.) As
an illustration of our treatment of these types of subsystems, consider the If-Action Subsystem in
Example 3 in Figure 4. The If block supplies an action signal to the action port (here labeled if{}),
which activates execution of the subsystem during the simulation step if the supplied value is
“true”. Our construction first treats a conditional subsystem like a regular subsystem with regard
to inputs and outputs. It also creates a vertex for the action port, adds an incoming port edge to
this vertex as indicated in the model, and adds an edge from the action-port vertex to every vertex
corresponding to a block in the submodel. This is necessary since a subsystem could have e.g.
Goto/From blocks that are affected by the trigger port but that do are not affected by the inputs
and outputs of the subsystem.

If Blocks. If blocks can have multiple inputs and outputs. One output is labeled if; there are op-
tionally several else if outputs and one else output. Each of these outputs has a corresponding
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logical expression and is connected to a conditional subsystem block. The If-block in the
Example 4 in Figure 4 has two inports, u1 and u2, and one if, one else-if, and one else output signal.
During execution the if-statement u1 == 1 is evaluated; if it is true the corresponding subsystem
is executed. If it evaluates to false the else-if statement u2 == 1 is evaluated and its corresponding
block is executed if it is true; otherwise the else statement’s block is executed. In our graph con-
struction, each logical statement is treated as a separate vertex (if, eif, e) that is connected to the
corresponding subsystem. The logical expressions are then analyzed, starting at the if-statement.
Each input that occurs in the logical expression of the if-statement is connected to the correspond-
ing if-vertex. In the example the expression of the if-statement is u1 == 1; therefore an edge from
the u1 port to the if-vertex is introduced. The else-if statement is u2 == 1. However, in order to
reach this part of the execution, the if-statement has to be false. The statement could therefore be
rewritten to !(u1 == 1) ∧ (u2 == 1), showing that both u1 and u2 influence the statement; edges
are thus introduced from the u1 and u2 inports to the eif-vertex. The else-statement does not in-
troduce a new logical expression, but again in order to reach it both the if and else-if statements
have to be false, which requires both inputs.

4.2 Association Rule Mining

We now explain our ideas for using the information stored in the dependency graph to improve the
association-rule-mining component of the invariant-generation process. The basic idea is to ensure
that for any association rule of form LHS⇒ RHS that is computed, there is a dependency between
each proposition in LHS and RHS. If you recall Section 2.3, the FP-Growth algorithm first identifies
the frequent item sets in the test data and then generates the association rules from these item sets.
It should be noted that a large proportion of the item sets that are generated cannot produce valid
association rules for our purposes. For example, consider the model in Figure 2; based on our
dependency information we know that in2 has no effect on out1, and therefore any association
rule of form in1⇒ out1 is spurious. Thus, an item set containing only {in2, out1} cannot be used
to create a non-spurious invariant. The goal is then to make sure that these invalid item sets are
not created in the first place, which also reduces the search space that the association-rule miner
has to explore. We propose two different approaches to achieve this goal: constraint-based mining

and partitioned mining. These are presented in more detail below.

4.2.1 Constraint-Based Mining. As a means to reduce the search space the FP-Growth algo-
rithm permits users to define constraints on the item sets that are generated [21]. The constraints
are generally either monotone or anti-monotone [19].

• A constraint is monotone if whenever set S violates the constraint, so do all subsets of S .
• A constraint is anti-monotone if whenever set S violates the constraint so do all supersets

of S .

In what follows we show how to use the static-analysis information to create anti-monotone con-
straints that will remove all frequent item sets that result in association rules leading to spurious
invariants. Since the FP-Growth algorithm creates item sets starting at size 1 up to the size of the
longest transaction, the benefits of an anti-monotone constraint become clear. If one can rule out
a set S one can immediately rule out any superset of S as a candidate set.

A valid association rule for our purposes has the form LHS ⇒ RHS, where the LHS mentions
inputs and internal variables and the RHS consists of a single output that is dependent on every ele-

ment in the LHS. (We could allow more than one element in the RHS, but this reduces performance
without enhancing the expressive power.) The following three constraints on item sets ensure
adherence to a format that results only in valid association rules.
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Fig. 5. Partitioning of the input data for the FP-Growth algorithm based on static analysis.

(1) If an item set has more than one output variable (RHS item) in it, the set should not be
saved or used to create larger item sets.

(2) If an item set contains one RHS item and one LHS term that the RHS item is not dependent
on, the set should not be saved or used to create larger item sets.

(3) If an item set does not contain an output (RHS item) yet, and there exists no output that
is dependent on all the other (LHS) items in the set, the set should not be saved or used to
create larger item sets.

It is easy to check that all three of these constraints are anti-monotone; any item set satisfying any
of these constraints will also have all its supersets satisfying the same constraint.

Rule 3 leads to the case where some item sets do not contain a RHS but are still saved. The
reason for this is that it is necessary to have all subsets of a valid item set available in order to later
calculate the confidence of the association rules. These incomplete rules are marked so that they
are not considered for rule creation and will only be used for the confidence calculations.

Our constraint-based mining approach involves adding the three constraints just mentioned
into the FP-Growth algorithm.

4.2.2 Partitioned Mining. In this approach, instead of modifying the mining algorithm as in the
constraint-based mining approach, the input data is split into sets from which only non-spurious
invariants can be generated. More specifically, for each output a subset of the data is extracted
that contains the output and all inputs and internal variables that our static analysis indicates the
output depends on. The FP-Growth algorithm is then applied separately on the subsets, and the
resulting association rules of each partition are then aggregated.

Figure 5 shows how a sample test case might be partitioned. The test case has three inputs (in1,
in2 and in3) (out1 and out2). Let us assume that static analysis has shown that in1 and in2 have
has a connection to out1; in2 also has a connection to out2; and in3 is not connected to any of
the outputs. The approach will therefore create a partition [in1, in2, out1] and a second partition
[in2, out2]. To save memory the full test case data is stored once and the partitions only store the
column indices of their associated inputs, internal variables, and outputs.

Partitioning the data beforehand leads to smaller data mining problems and, in principle, should
therefore speed up the data mining process and reduce the memory consumption. This speed-up
could potentially be offset by the fact that the algorithm must be invoked once for each output.
The experimental section of the paper investigates this trade-off.

5 EXPERIMENTAL EVALUATION

This section describes an experimental evaluation of our static-analysis-based approaches for im-
proving invariant generation.

5.1 Hypotheses

The goal of the evaluation is to evaluate how well constraint- and partitioning-based data mining
perform vis à vis the original approach outlined in Section 2.2, as well as with respect to each other.
The following hypotheses guide our experiments.
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Table 1. Un/Controlled and Dependent Variables of the Experiment

Type Variables

Independent Controlled Test Generator Settings,
System Models, Approach
(with/without improvements),
Minimum Support Threshold

Independent Uncontrolled Load on machine, Machine
State, Free Memory, Random
aspects of test generator

Dependent Runtime in seconds, Memory
Consumption, Jaccard Score

• H1: Using dependency information produces higher accuracy invariants and fewer spurious
invariants than not using it.

• H2: Using dependency information yields reduces the search space of the data mining pro-
cess and improves performance in terms of execution time and memory consumption

• H3: The constraint-based approach and partition-based approach are indistinguishable in
terms of accuracy and lack of spurious invariants, and also in terms of performance.

H1 is concerned with the accuracy of the resulting invariants and H2 with the performance of the
static-analysis-based approaches in this paper in comparison with the original approach, which
does not use this information. H3 is used to evaluate the two static-analysis-based approaches
against each other.

Accuracy is mentioned in Hypotheses 1 and (indirectly) 3. Our intention here is to compare the
automatically generated invariants against a collection of invariants, which we call the golden in-

variants, for each model in our study. These invariants were produced in a three-step approach.
(1) the unimproved approach was applied to generate an initial set of invariants; (2) spurious in-
variants were then pruned using the static analysis information and (3) the resulting invariants
were manually inspected to add missing invariants that should have been added and removing in-
variants that are invalid. The notion of golden invariant is somewhat subjective as a result, and the
importance of the accuracy figures is thus relative (how well do the different techniques compare
to each other?) rather than absolute.

For H2, performance is measured in terms of the total execution time of the overall process
as well as the execution time of data mining, and in terms of the memory consumption during
data ming. For the comparison of the improvements in H3 we hypothesize that the accuracy and
lack of spurious invariants should be the same. For the performance we expect differences based
on the characteristics of the model: we believe that models with fewer outputs should perform
better in the partitioned approach, while models with many outputs should perform better in the
constraint-based approach.

5.2 Variables and Data Collection

The dependent and independent (controlled and uncontrolled) variables for the experiments are
listed in Table 1. The independent controlled variables include the test-generation settings of Re-
actis, which allow the user some control over how Reactis creates tests. For the purposes of this
study we used two different settings. Generally speaking, Reactis combines random test genera-
tion followed by a targeted phase that supplements the randomly generated tests with new tests
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Fig. 6. Illustration of the Jaccard- and the over/under score.

that improve coverage. In our first setting, we directed Reactis to create 100 random tests with 100
steps each, and to use up to 20,000 execution steps in the targeted phase. The second test setting
creates 1,000 random tests with 1,000 steps each, while again using 20,000 targeted steps. We will
call the first test setting short tests and the second setting long tests. In both cases we selected all
coverage criteria supported by Reactis; this means Reactis will attempt to achieve 100% coverage
of all of these. Other controlled variables are the system models used in the evaluation and the
settings of the requirement extraction process (e.g. turn the improvements on or off), as well as
the minimum support threshold used in the data mining algorithms. The support threshold was
set to 1 to guarantee that every invariant in the dataset is mined.

The dependent variables of the experiments are the runtime for each iteration in seconds
(recorded for different parts of the process), the memory usage of the data-mining algorithm and
the accuracy of the resulting invariants. For the execution time we record the overall time it takes
to run the iteration as well as the time for the test generation, for the data mining and the time for
the other processes (e.g. instrumentation). The time is captured by using a probes in the code. The
peak memory usage of the data mining algorithms is measured using the MemoryLogger class of
the SPMF data mining library. Spurious invariants are a subset of false positives and impact the ac-
curacy of the resulting invariants. The accuracy is measured by comparing the resulting invariants
to a set of semi-automatically created golden invariants of the systems using the Jaccard similarity
coefficient [12]. The Jaccard coefficient is a set-similarity statistic that measures the overlap of two
sets (the golden set of invariants, with the set produced by the framework), with a score of 0 (low-
est) which signifies there is no overlap to a score of 1 (highest) which signifies complete overlap
and therefore set equivalence. Two invariants are equal if both their LHS and RHS contain the same
elements, any deviation (e.g. a=4 instead of a=1 on the lhs) means they are not equal and reduce
the Jaccard score. However, a score below 1 can be caused by missing true invariants and/or false
positives. We therefore added two more measurements based on the Jaccard coefficient. The un-
der score indicates how much of the deviation from 1 is caused by missing invariants and the over
score indicates how much is caused by false positives. This is illustrated in Figure 6; the golden set
in this example contains two invariants, while the extracted set contains three. The intersection of
the two sets contains only one invariant and the union of the set contains four invariants, and thus
the Jaccard score of this example is 1/4. The under score is calculated by dividing the number of
invariants in the complement дolden/extracted with the elements in the union, which in the ex-
ample is also 1/4. The over score is calculated accordingly using the complement extracted/дolden
and yields 2/4 = 1/2.
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Table 2. Model Metrics, Variables are Listed as Inputs/Internal/Outputs

Name Variables Blocks Invariants Connectivity

Cruise Control 7/2/2 83 34 9/8/8.5

Daytime Driving Light 14/0/3 52 31 9/8/8.3

Emergency Blinking 2/1/1 165 46 3/3/3.0

Exterior Light 31/4/22 515 406 17/6/11.5

Fog Light 10/3/4 59 70 10/7/8.8

High Beam Light 9/0/2 52 24 7/7/7.0

Low Beam Light 9/0/5 40 48 7/7/7.0

Parking Light 7/0/7 83 38 7/5/5.6

Position Light 9/0/7 48 30 5/5/5.0

Rear Fog Light 11/0/5 56 28 9/2/6.8

Defibrillator 1 4/3/3 184 63 7/7/7.0

Defibrillator 2 7/16/5 627 69 22/21/21.2

The independent uncontrolled variables are related to nondeterministic factors of the exper-
imentation system, such as the load on the machine during the experiments, the available free
memory, and the machine state. Another uncontrolled factor is the random aspect of the Reactis
test generator, which is present in both the initial and targeted phases of the test-generation
procedure. To control for these last aspects we constrain the random seeds used in the Reactis
randomization process. Specifically, each experiment starts with the same fixed random seed and
in each iteration the random seed is increased by one. This allows variations of test cases between
the different iterations; however the random aspects of corresponding iterations in different
experiments will be the same. The targeted test generation aspect depends on the instrumented
invariants and cannot be fully controlled. To mitigate the impact of these uncontrolled variables,
each experimental run is repeated ten times and the resulting dependent variables are then
analyzed using their averaged values.

5.3 Test Applications

We use 12 Simulink models for our experiments. Ten of the models are from the automotive domain
and represent parts of the lighting- and cruise-control systems of a car. The other two models are
from the medical-device domain and are models of cardiac defibrillators [14]. The models vary
in their complexity, with the smallest containing 40 Simulink blocks and the largest 627 blocks.
The combined number of in/outputs and internal variables of the models varies from four to 57.
From the 12 models five have internal state variables, while the other 7 are stateless. The number
of golden invariants for the different models varies from 24 to 406. The last column shows the
connectivity of the model, which is the maximum, minimum and average number of inputs and
internal variables that the outputs of the system depend on. For example the Cruise Control model
has two outputs; the first output is traceable via static analysis to all 9 inputs and internal variables,
whereas the second one is only traceable to 8 of them, making its average number of connections
from inputs to outputs 8.5.

6 RESULTS AND DISCUSSION

The experimental data can be seen in Tables 3–6. The approach was executed with the three dif-
ferent data-mining strategies on each of the 12 models. For evaluation of the performance values
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Table 3. Jaccard Score and # of Iterations to End the Experiments

Short Tests: Jaccard (Iterations) Long Tests: Jaccard (Iterations)

Model Name UA CBA PBA UA CBA PBA

Cruise Control 0.72 ↑0.04 0.93 ↑0.02 0.92 ↑0.04 0.94 ↑0.03

↓0.34 15 ↓0.05 12 ↓0.05 13 ↓0.03 (4) 0.97 ↓0.03 (4) 0.97 ↓0.03 (4)

Daytime Driving Light T/O 1.00 (8) 1.00 (8) T/O 1.00 (4) 1.00 (4)

Emergency Blinking 1.00 (4) 1.00 (4) 1.00 (4) 1.00 (4) 1.00 (4) 1.00 (4)

Exterior Light Crash 1.00 (7.3) 1.00 (7.1) Crash Crash 1.00 (4)

Fog Light 0.17 ↑0.83 (15) 0.97 ↑0.03 (5) 0.97 ↑0.03 (5) 1.00 (11) 1.00 (4) 1.00 (4)

High Beam Light 0.29 ↑0.71 (15) 1.00 (6) 1.00 (6) 1.00 (7) 1.00 (4) 1.00 (4)

Low Beam Light 0.62 ↑0.38 (12) 1.00 (6) 1.00 (6) 0.73 ↑0.27 (5) 1.00 (4) 1.00 (4)

Parking Light 1.00 (8) 1.00 (4) 1.00 (4) 1.00 (4) 1.00 (4) 1.00 (4)

Position Light 0.42 ↑0.58 (12) 1.00 (4) 1.00 (4) 0.45 ↑0.55 (5) 1.00 (4) 1.00 (4)

Rear Fog Light T/O 1.00/8 1.00 (8) T/O 1.00 (4) 1.00 (4)

Defibrillator 1 1.00 (4) 1.00 (4) 1.00 (4) 1.00 (4) 1.00 (4) 1.00 (4)

Defibrillator 2 Crash Crash 1.00 (5) Crash Crash Crash

Table 4. Data Mining Time per Iteration in Seconds

Mining Time (Short Tests) Mining Time (Long Tests)

Model Name UA CBA PBA UA CBA PBA

Cruise Control 0.64 0.78 122% 0.87 136% 8.17 8.62 106% 20.51 251%

Daytime Driving Light T/O 1.19 N/A 0.71 N/A T/O 28.56 N/A 47.15 N/A

Emergency Blinking 0.052 0.035 67% 0.068 131% 2.49 2.66 107% 4.37 176%

Exterior Light Crash 560 N/A 22.74 N/A Crash 21364 N/A 560 N/A

Fog Light 16.45 1.46 9% 0.98 6% 60.15 17.12 28% 34.35 57%

High Beam Light 0.84 0.24 29% 0.39 46% 18.84 10.92 58% 21.22 113%

Low Beam Light 0.33 0.2 61% 0.87 138% 15.9 11.7 74% 28.06 176%

Parking Light 0.33 0.2 61% 0.57 173% 12.45 11.83 95% 38.1 306%

Position Light 0.7 0.18 26% 0.45 64% 17.95 14.59 81% 32.75 182%

Rear Fog Light T/O 9.56 N/A 8.47 N/A Crash 77.49 N/A 153 N/A

Defibrillator 1 0.12 0.17 142% 0.45 375% 8.42 8.41 100% 26.56 315%

Defibrillator 2 Crash Crash N/A 296 N/A Crash Crash N/A Crash N/A

we followed the example of Fontana [9] and calculated paired data by comparing the results of the
unimproved approach (UA) against the constraint-based (CBA) and partitioning-based approach
(PBA). The result is a percentage value that indicates the increase or decrease of time or memory
consumption for each of the models.

The Jaccard score is of the resulting set of invariants after the iterative approach terminated.
Because some experiments of the UA would not terminate properly, due to the spurious invariants,
we introduced a 15-iteration limit. Execution times are given in seconds. Memory consumption
is recorded in megabyte (MB). Experiments that crashed the experimental setup are marked with
crash. A T/O marks an experiment that exceeded a limit (8 hours) that we set in place to cap the
execution of an iteration. We omitted separate mention of the static-analysis times, since it has
to be performed only once at the beginning of the process and the impact on the performance is
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Table 5. Average Time per Iteration in Seconds

Iteration Time (Short Tests) Iteration Time (Long Tests)

Model Name UA CBA PBA UA CBA PBA

Cruise Control 95.48 79.02 83% 79.15 83% 735 737 100% 746 101%

Daytime Driving Light T/O 61.40 N/A 61.15 N/A T/O 457 N/A 458 N/A

Emergency Blinking 52.91 52.63 99% 52.39 99% 574 573 100% 575 100%

Exterior Light Crash 874 N/A 338 N/A Crash 26616 N/A 4487 N/A

Fog Light 316 66.70 21% 66.67 21% 1719 813 47% 836 49%

High Beam Light 138 58.18 42% 57.95 42% 824 577 70% 581 71%

Low Beam Light 102 57.43 56% 58.27 57% 709 557 81% 594 84

Parking Light 59.06 56.17 95% 55.81 94% 548 546 100% 571 104%

Position Light 64.11 49.57 77% 49.37 77% 438 407 93% 425 97%

Rear Fog Light Crash 76.88 N/A 76.76 N/A Crash 824 N/A 842 N/A

Defibrillator 1 68.86 68.41 99% 69.13 100% 709 710 100% 728 103%

Defibrillator 2 Crash Crash N/A 447 N/A Crash Crash N/A T/O N/A

Table 6. Peak Memory Consumption During Data Mining

Max Memory (Short Tests) Max Memory (Long Tests)

Model Name UA CBA PBA UA CBA PBA

Cruise Control 550 520 95% 324 59% 7168 6421 90% 5802 81%

Daytime Driving Light T/O 414 N/A 200 N/A T/O 5759 N/A 5543 N/A

Emergency Blinking 76 335 441% 145 191% 2189 2468 113% 2313 106%

Exterior Light Crash 5195 N/A 2265 N/A Crash Crash N/A 12862 N/A

Fog Light 5051 316 6% 194 4% 11290 6634 59% 7009 62%

High Beam Light 416 177 43% 132 32% 6834 6480 95% 6162 90%

Low Beam Light 525 203 39% 144 27% 6422 6172 96% 5950 93%

Parking Light 260 163 63% 106 41% Crash 6170 N/A 7694 N/A

Position Light 590 150 25% 115 19% 7127 5568 78% 5868 82%

Rear Fog Light T/O 256 N/A 270 N/A T/O 6576 N/A 6995 N/A

Defibrilator 1 241 267 111% 228 95% 4950 5932 120% 4443 90%

Defibrilator 2 Crash T/O N/A 20953 N/A Crash T/O N/A T/O N/A

minuscule compared to the testing and data mining. For example, the longest execution time of
the dependency analysis was 73 milliseconds (for the Exterior Light model).

6.1 Hypothesis 1: Accuracy

For H1 we are evaluating whether or not the accuracy was improved with the introduction of
CBA and PBA. Table 3 shows the Jaccard score after the last iteration of each experiment and how
many iterations it took to finish. As can be seen, the UA crashed for two of the 12 models due to
lack of memory (which means it needed more than the 32GB available to it) and timed out for two
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more. For the 10 models that it was able to process fully, in the short tests Reactis setting it has
a lower accuracy in eight models and an equal accuracy in two. For the long tests the UA has a
lower accuracy in six models and equal accuracy in four. This indicates that H1 is true, because
the accuracy of the improvements is always higher or at least as high as the UA. The unimproved
version often also requires more iterations than the improved versions, since the improvements
can eliminate spurious invariants early on, meaning the test generator can focus on a smaller
number of invariants.

The UA has issues with spurious invariants in five models for the short tests; however for two of
these models in the long tests the accuracy is the same as the improved version. This suggests that
the issue with spurious invariants can be overcome, at least partly, with additional random test
data, but it is not guaranteed. The results also seem to provide further evidence to the observation
in [1] that better (in this case more tests) improve the accuracy.

6.2 Hypothesis 2: Performance

For H2 we are evaluating whether or not the performance in terms of execution time and maximum
memory consumption was improved with the introduction of CBA and PBA. Table 4 shows the
average execution times for the data-mining process in each iteration of an experiment; the average
time for the full iteration (test generation + data mining + instrumentation) can be seen in Table 5
and the maximum memory consumption during data mining in Table 6. For the short tests the
UA crashes for two out of 12 models; it times out for two more. It is slower in six and faster
in two models. For the models where the UA does not crash CBA is 38% faster and PBA is 34%
slower on average. For the long tests the UA also crashes and times out two times, respectively.
It is slower in six and faster in two models. The CBA miner is 19% faster on average, and PBA
97% slower. The cases where the UA is competitive with CBA are mostly the small- to medium-
sized models, with highly connected in/outputs. This is to be expected since the improvements
are targeted at removing overhead from unconnected values. The slightly faster performance in
some of the cases with high connectedness indicates that there is some overhead cost associated
with the improvements. This was expected, especially for PBA, since it has to be executed once
for every output. Also, checking the constraints for each item set in CBA incurs a cost that only
pays off if it reduces the search space.

The overall time per iteration is the time spent on test generation, data mining and other tasks
in the framework (e.g. instrumentation). For small- to medium-sized models with high connec-
tivity the execution time of the data miner and the overall iteration time is similar (e.g. Parking
Light). However, for models where the UA infers many spurious invariants (indicated by the low
accuracy of the results, e.g. High Beam Light) the execution time of the iteration can be slowed
down considerably. This is due to the fact that test generator has to spend time trying to disprove
the spurious invariants. The Daytime Driving Light and Rear Fog Light are extreme cases for this
behavior. They produce over 3000 spurious invariants, and the test generator therefore breaks the
eight-hour limit that we set for each iteration.

The UA uses more memory in seven cases and less in one case for the short and long tests.
On average CBA uses 3% more memory for the short and 7% less for the long tests. However,
the CBA result is skewed by the one outlier in the Emergency Blinking model, which has a very
low memory footprint. Without this model CBA is on average 46% faster for the short and 9% for
the long test. PBA uses 59% less memory in the short test and 18% in the long tests. The crashes
of the system are caused by lack of memory. These results show that H2 is not always true. For
some cases where the system is highly connected there can be performance penalties due to the
overhead associated with checking the constraints and a large overhead for the partitioning of the
data that can make the improvements slightly slower. However, for the small- to medium-sized
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models the data-mining time is only a small factor of the overall time and even though there are
improvements, they are negligible in comparison to the overall iteration time. But the improve-
ments can have a significant impact for larger models both in terms of execution time and memory
consumption. The unimproved approach was not able to handle the data mining for the two largest
models. The two magnitudes of additional test data from the short to the long tests have a large
impact on the execution time and the memory consumption of the approach. The FP-Growth al-
gorithm only has to read the data twice and is therefore not bounded so much by the amount
of data than other association-rule-mining algorithms. However, generating and parsing the tests
can take considerable amounts of time for the larger tests. Also all the test data is aggregated in
each iteration and is kept in memory which can also take up 2-7GB of memory (depending on the
number of variables). One solution to this problem could be the addition of mining approaches
that allow to add data incrementally; this way only the new test data would have to be read and
stored in memory and could be discarded after the iteration.

6.3 Hypothesis 3: Improvement Comparison

For H3 we are evaluating whether or not CBA and PBA are performing the same in terms of
accuracy and execution time/memory consumption. The results in Table 3 show that the accuracy
of the two approaches is the same except for one case. In the short tests of the cruise-control model
CBA has an accuracy of 0.95 and takes 12 iterations and PBA has an accuracy of 0.94 and takes
13 iterations. We analyzed the data and applied the test data from PBA to CBA but they produce
the same results. However, what is different is the order in which the invariants are recorded.
The order of the invariants could influence the generated tests from Reactis and explain this small
discrepancy.

For the small- and medium-sized models (Table 4) CBA is usually better since PBA has to ex-
ecuted once for each output. This is especially apparent for the long tests. For the larger models,
however, PBA performs much better. PBA is the only algorithm that can handle the second defib-
rillator model and for the Exterior Light model PBA mines the invariants in 23s for the short and
560s for the long tests. It takes CBA 560s and 21,070s respectively to mine the same data. Further-
more, PBA tends to use less memory than CBA, although this is not true for all models. Thus, the
first part of H3 is true; CBA and PBA have the same accuracy. The performance of the two ap-
proaches depends heavily on the model characteristics and the amount of test data; also PBA tends
do be less memory-intensive for systems that have less connectivity and therefore the second part
of H3 is not true. Analysis of the connectedness could be used to determine dynamically which
of the algorithms to use for a model. Except for fully connected models the static analysis infor-
mation always proved useful. Adapting the idea behind CBA requires that the algorithm supports
anti-monotone constraints and requires changes in their source code. The idea behind PBA on the
other hand can be easily adapted to other data-mining algorithms. For future work we adapted it
to a decision-tree-based algorithm, without having to make any changes to the algorithm itself.

7 THREATS TO VALIDITY

The discussion about potential threats to validity of the experimental evaluation presented in this
paper is based on Wohlin et al’s [23] four-class layout that includes: threats to internal, external,
construction, and conclusion validity.

7.1 Threats to Internal Validity

We considered two potential problems for internal validity. (1) Do the different implementations
of the data miner (unimproved, constraint-based and partition-based) work as intended? (2) Are
there any inefficiencies in the implementation that could explain the results? In order to evaluate
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if all the algorithms do the right thing we tested them with data for which we know the resulting
invariants. To avoid accidental inefficiencies we used the same implementation of the FP-Growth
algorithm for all three versions. The difference between them is a boolean flag that activates the
additional constraint checks but otherwise they share the same code base. We also profiled the
code with JProfiler5 to identify potential bottle necks.

7.2 Threats to External Validity

The specific implementation of our approach in this paper analyzes Simulink models, and we ap-
plied it on models from the automotive and medical-device domain. However, it should be applica-
ble to other Simulink models as well. In fact, we believe that the approach is generally applicable
as long as the requirements in Section 2.2 are met.

7.3 Threats to Construct Validity

Using incorrect measures in the experiments is a threat to construct validity. For the performance
of the improvements we measured the time and the memory consumption, which are direct mea-
sures and therefore good indicators for relative performance. For measuring accuracy we use the
Jaccard set similarity score to compare the generated set of invariants against a golden set we
provided and validated as described in Section 5.1. To make sure that the measures were not in-
fluenced by any uncontrolled factors (like the state of the experimentation machine) we repeated
all experiments 10 times and averaged the results.

7.4 Threats to Conclusion Validity

In order to mitigate self bias, we applied the approach to a variety of models where some of the
models played to the strength of the approaches (inputs and internal variables that are not con-
nected to some of the outputs) and some represented the worst-case scenario (all inputs, internal
variables are connected to all the outputs).

8 RELATED WORK

Program invariants have been used to reduce the search space of model checkers [6], for
the analysis of log files [5], or for specification extraction [8]. This work improves the ac-
curacy and scalability of a specification-extraction approach [1] by incorporating information
from static data- and control-flow analysis into the invariant-mining algorithm. Other
specification-extraction approaches, such as the Refinement Calculus of Reactive Systems (RCRS)
[7], creates contracts of a Simulink model in a bottom-up modular fashion, producing a specifica-
tion that describes the global behavior of the model. Rather than specifying globally what all the
behaviors are, our approach creates several invariants that are partial descriptions of this global
behavior that can be understood independently.

Translating Simulink models into other modeling notations and languages has often been done
for the purpose of formal verification [2, 18]. Pantelic et al. [20] present a tool suite that can ex-
tract interfaces from Simulink submodels using static data/control-flow analysis. Instead of ex-
tracting interfaces our approach extracts invariants of the whole system. The Artshop tool [11] is
a suite of tools for analysis, reporting and inspection of Simulink models. It has the capability to do
static dependency/control-flow analysis, which is used to create slices of models. However, it does
not have a specification extraction tool. Lublinerman et al. [15–17] introduce several methods for
dependency analysis of Simulink models that they use for modular code generation. Our graph
representation and transformation process is similar to their block-based dependency analysis, but

5https://www.ej-technologies.com/products/jprofiler/overview.html
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we are not employing it to give semantics to a diagram and are only interested in computing the
dependencies between elements in a model. Their work also presents a input-output dependency

analysis based on bipartite graphs. However, this is not applicable in our context, since we also
need information about internal variables of a system.

The GoldMine tool [22] extracts temporal and propositional invariants for hardware designs us-
ing a decision-tree algorithm. It uses static analysis of the hardware design and formal verification
to remove spurious invariants produced by the data miner. In our approach we created a static
analyzer for Simulink models that can identify data and control dependencies between inputs, in-
ternal variables and the outputs of the system and the assertions are used to infer specifications
of the system.

9 CONCLUSION

This paper shows how data- and control flow dependencies in Simulink models may be computed
and used to improve the mining of invariants from models. The data- and control- flow informa-
tion is obtained by transforming a Simulink model into a directed graph using rules presented
in this work. The resulting graph can then be searched to identify the dependencies between the
inputs, internal variables and outputs of a system. This information is then used to introduce two
improved versions of the data-mining process of an existing invariant-extraction technique. The
improvements eliminate spurious invariants and reduce the search space of the data miner, thereby
increasing the accuracy and decreasing execution time and memory consumption.

We also report the results of an experimental evaluation on 12 Simulink models from the auto-
motive and medical-device domains. The experiments show that the improvements made it possi-
ble to analyze all models that caused the original approach to crash due to memory overflows. For
the other models the new techniques reduced the execution time and the memory consumption
(by %39/%42). Furthermore, the improvements increased the accuracy of the approach by removing
the false positives that were inferred by the data miner. One technique (the constraint-based data
miner) was fastest for medium-sized models and more test data, whereas the other technique (the
partition-based data miner) had lower memory consumption and scaled better for larger models.

For future work we are planning to integrate algorithms that can handle numerical vari-
ables without manual abstractions and integrate the static analysis information into these al-
gorithms. We also intend to compare mined specifications against actual system specifications.
For this comparison we are developing an inspection tool that helps the user to better analyze
the mined specifications.
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