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• A partial differential equation (PDE) is an equation that 
– Has an unknown function depending on at least two variables 

– Contains some partial derivatives of the unknown function 

Basic notions and notations 

• The following notation will be used in this talk: 

• t,x,y,z – are independent variables including time and 

space coordinates. 

• u=u(t,x,…) – are dependent variables (unknown 

functions) whose partial derivatives are denoted 
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• Separation of variables 

• Integral transforms 

• Change of coordinates 

• Transformation of the dependent variable 

• Numerical Methods. A PDE is changed into a system of 

difference equations that can be solved by iterative techniques 

(Finite Difference Methods).  Solutions can also be approximated 

using polynomial functions (e.g. Finite Element Methods).  

• Perturbation Methods 

• Impulse-response technique 

• Integral equations 

• Variational methods 

• Eigenfunction expansion 

Methods and techniques for solving PDEs 
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• An initial-boundary-value problem is well-posed if: 

– a solution exists 

– the solution is unique 

– the solution depends continuously on the data (boundary 

and/or initial conditions).  Small changes in the data 

should cause only small changes in the solution. 

• Problems which do not fulfill these criteria are ill-

posed. 

• Well posed problems have a good chance of being 

solved numerically by a stable algorithm. 

– Unavoidable small errors in initial and boundary data 

produce only slight errors in the computed solution 

leading to useful results. 

Well-posed and ill-posed problems 
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• Order of the PDE. The order of a PDE is the order of the highest 

partial derivative in the equation. 

 

– First order: 

 

– Second order: 

 

– Third order: 

 

– Fourth order: 

Basic Classification of PDEs 
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• Order of the PDE. The order of a PDE is the order of the highest 

partial derivative in the equation. 

• Number of variables. PDEs may be classified by the number of 

their independent variables, that is, the number of variables the unknown 

function depends on. 

 

– PDE in two variables: 

 

– PDE in three variables: 

 

– PDE in four variables:  

 

Basic Classification of PDEs 
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• Order of the PDE. The order of a PDE is the order of the highest 

partial derivative in the equation. 

• Number of variables. PDEs may be classified by the number of 

their independent variables, that is, the number of variables the unknown 

function depends on. 

• Linearity.  A PDE is linear if the dependent variable and all its 

derivatives appear in a linear fashion. 

 

– linear: 

 

– nonlinear: 

Basic Classification of PDEs 
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• Order of the PDE. The order of a PDE is the order of the highest 

partial derivative in the equation. 

• Number of variables. PDEs may be classified by the number of 

their independent variables, that is, the number of variables the unknown 

function depends on. 

• Linearity.  A PDE is linear if the dependent variable and all its 

derivatives appear in a linear fashion. 

• Coefficients. PDEs can contain constant or variable coefficients (i.e. 

if at least one of the coefficients is a function of some independent 

variable) 

– constant coefficients: 

 

– variable coefficients: 

Basic Classification of PDEs 
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• Order of the PDE. The order of a PDE is the order of the highest 

partial derivative in the equation. 

• Number of variables. PDEs may be classified by the number of 

their independent variables, that is, the number of variables the unknown 

function depends on. 

• Linearity.  A PDE is linear if the dependent variable and all its 

derivatives appear in a linear fashion. 

• Coefficients. PDEs can contain constant or variable coefficients (i.e. 

if at least one of the coefficients is a function of some independent 

variable) 

• Homogeneity. A PDE is homogenous if the free term (right-hand 

side) is zero. 

Basic Classification of PDEs 

(non-homogenous) 

(homogenous) 
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• A second-order linear PDE in two variables can be written in 

the following general form: 

 

 

   where A,B,C,D,E,F are coefficients and G is a  

   non-homogenous term.   

• These PDEs are classified into three types whose 

mathematical solutions  are quite different: 

 

– Hyperbolic: 

 

– Parabolic: 

 

– Elliptic: 

Types of second-order linear PDEs 
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• A second-order linear PDE in two variables can be written in 

the following general form: 

 

 

   where A,B,C,D,E,F are coefficients and G is a  

   non-homogenous term.   

• These PDEs are classified into three types whose 

mathematical solutions  are quite different. 

• The three major classifications of linear PDEs describe 

physical problems into three basic types: 

– Vibrating systems and wave propagation (hyperbolic) 

– Heat flow and diffusion processes (parabolic) 

– Stead-state phenomena (elliptic) 

Types of second-order linear PDEs 
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• The heat equation (parabolic) 

 

 

• The wave equation (hyperbolic) 

 

 

• The Poisson equation (elliptic) 

Some Basic PDEs 
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• A PDE 

 

• Solution domain (regular, irregular) 

 

• Boundary conditions  

– Dirichlet B.C.  Specify u(x,y,...) on boundaries 

– Neumann B.C.  Specify normal gradient of 

 u(x,y,...) on boundaries. 

 

• Initial values 

 

• Stable and convergent numerical algorithm 

Solving PDEs: Recipe List 
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• Introduce finite difference 

 

Numerical Derivatives: Finite Differences 

Forward difference 

Backward difference 

Central difference 

Central difference (2nd order) 
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Heat Equation Recipe  

• The PDE: 

• The domain: 1-d rod 

• Boundary conditions (dirichlet) and initial values. 

• Numerical algorithm (tbd) 

t 

x 
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Heat Equation: Explicit Method 

• Use forward difference for time derivative and 

second-order central difference for space derivative: 

 

 

 

• Iterate equation: 

  where 

– Knowing values at time step n allows you to compute 

values at time step n+1  

• This method is numerically stable and convergent 

when             with numerical errors proportional to  

where c=1 
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Heat Equation: Implicit Method 

• Use backward difference at time n+1 and a second-

order central difference for space derivative: 

 

 

 

• Solve linear eqs: 

  where 

– Solving linear system of equations at each step is more 

numerically intensive than explicit methods. 

• This method is always numerically stable and 

convergent with numerical errors proportional to  

where c=1 
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Heat Equation: Crank-Nicolson Method 

• Use central difference at time n+1 and a second-

order central difference for space derivative: 

 

 

 

• Solve linear eqs: 

  where 

– Solving linear system of equations at each step is more 

numerically intensive than explicit methods but more accurate. 

• This method is always numerically stable and 

convergent with numerical errors proportional to  
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Heat Equation: Example Solution 
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Numerical Derivatives: Spectral Methods 

n (ik)^n Feature 

1   ik Propagation (no dispersion) 

2  - k^2 Decay 

3 - ik^3 Propagation (dispersion) 

4    k^4 Growth 

In space In time 
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• Apply the fourier transform to both sides of the equation 

 

 

 

 

• Take the inverse Fourier transform of 

 

 

 

Poisson: Spectral Method 

Sample solution for:  
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• Finite Difference 5-point 

– fast 

 

• Finite Difference 9-point 

– preserves symmetry 

 

 

• Spectral  

Reaction Diffusion Equations: Laplacian 
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Reaction Diffusion Equations: Time Integration 

• Lots of time integrators available to solve the PDE 

 

• One family of integrators involve Runge-Kutta 

(1,2,4) methods  

– For example the Euler (RK1): 

 

 

– RK 2,4 are multi-step and therefore more 

computationally expensive but more accurate. 
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Reaction Diffusion Equation: Putting it all together 

• The PDE (choose your cardiac cell model) 

 

• Solution domain: regular, irregular (phase field) 

 

• Boundary conditions are Neumann: no flux or periodic 

 

• Initial values 

 
• Stable and convergent numerical algorithm. Your pick! 
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Questions? 
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• Consider the PDE: 

 

• The CN method is a combination of the forward 

Euler method at time step n and backward Euler 

method at step n+1: 

 

 

EXTRA: Crank-Nicolson 


