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Basic notions and notations

A partial differential equation (PDE) is an equation that
Has an unknown function depending on at least two variables
Contains some partial derivatives of the unknown function

The following notation will be used in this talk:

t,X,y,z — are independent variables including time and
space coordinates.

u=u(t,x,...) — are dependent variables (unknown
functions) whose partial derivatives are denoted

5, ;27 o2
Uy = 8_?; Utt = o2 Ugy = Ga:gy




Methods and techniques for solving PDES

Separation of variables

Integral transforms

Change of coordinates

Transformation of the dependent variable

Numerical Methods. A PDE is changed into a system of
difference equations that can be solved by iterative techniques
(Finite Difference Methods). Solutions can also be approximated
using polynomial functions (e.g. Finite Element Methods).

Perturbation Methods
Impulse-response technique
Integral equations
Variational methods
Eigenfunction expansion



Well-posed and ill-posed problems

An initial-boundary-value problem is well-posed If:
a solution exists

the solution is unigue

the solution depends continuously on the data (boundary

and/or initial conditions). Small changes in the data

should cause only small changes in the solution.
Problems which do not fulfill these criteria are ill-

posed.

Well posed problems have a good chance of being
solved numerically by a stable algorithm.

Unavoidable small errors in initial and boundary data
produce only slight errors in the computed solution
leading to useful results.



Basic Classification of PDEs

Order of the PDE. The order of a PDE is the order of the highest
partial derivative in the equation.

First order: Ut = Uy
Second order: Ut = Uqpy uw — ()
Third order: Ut + Uppy = S’L?’L(Jj)

Fourth order: Utt = Uprrr



Basic Classification of PDEs

Order of the PDE. The order of a PDE is the order of the highest
partial derivative in the equation.

Number of variables. ppEs may be classified by the number of
their independent variables, that is, the number of variables the unknown

function depends on.
PDE in two variables: Up = Ugy (u = u(t,x))
PDE in three variables: v, = u,, + fu, + 712u99 (w = u(t,r,0))

PDE in four variables: u; = u,, + u,, +u,. (u=u(t,z,y,z2))



Basic Classification of PDEs

Order of the PDE. The order of a PDE is the order of the highest
partial derivative in the equation.

Number of variables. ppEs may be classified by the number of
their independent variables, that is, the number of variables the unknown
function depends on.

Linearity. A PDE is linear if the dependent variable and all its
derivatives appear in a linear fashion.

linear: Uy + exp(—1t)uy, = sin(t) Ty, + Yy, =0

nonlinear: UlUyyr + U = 0 Uy + Uy + u? =0



Basic Classification of PDEs

Order of the PDE. The order of a PDE is the order of the highest
partial derivative in the equation.

Number of variables. ppEs may be classified by the number of

their independent variables, that is, the number of variables the unknown
function depends on.

Linearity. A PDE is linear if the dependent variable and all its
derivatives appear in a linear fashion.

Coefficients. PDEs can contain constant or variable coefficients (i.e.

If at least one of the coefficients is a function of some independent
variable)

constant coefficients: Utt + OUyy — Uy = 0

variable coefficients: Uy + e;gp(_t)um — ()



Basic Classification of PDEs

Order of the PDE. The order of a PDE is the order of the highest
partial derivative in the equation.

Number of variables. ppEs may be classified by the number of
their independent variables, that is, the number of variables the unknown
function depends on.

Linearity. A PDE is linear if the dependent variable and all its
derivatives appear in a linear fashion.

Coefficients. PDEs can contain constant or variable coefficients (i.e.

If at least one of the coefficients is a function of some independent
variable)

Homogeneity. A PDE is homogenous if the free term (right-hand

side) is zero.
(homogenous) Uy — Upy = 0

(non-homogenous) Ut — Upy = LL‘QS?:?’Z(t)



Types of second-order linear PDEs

A second-order linear PDE In two variables can be written in
the following general form:

Auyy + Bugy + Cuyy + Duy + Euy + Fu =G

where A,B,C,D,E,F are coefficients and G is a
non-homogenous term.

These PDEs are classified into three types whose
mathematical solutions are quite different:

Hyperbolic: ~ B? —4AC > 0 (e.g. us — Ugpy = 0)
Parabolic: B? —4AC =0 (e.g. Ut — Upy = )

Elliptic: B? —4AC < 0 (e.g. gy — uyy = 0)



Types of second-order linear PDEs

A second-order linear PDE In two variables can be written in
the following general form:

Auyy + Bugy + Cuyy + Duy + Euy + Fu =G

where A,B,C,D,E,F are coefficients and G is a
non-homogenous term.

These PDEs are classified into three types whose
mathematical solutions are quite different.

The three major classifications of linear PDEs describe
physical problems into three basic types:

Vibrating systems and wave propagation (hyperbolic)
Heat flow and diffusion processes (parabolic)
Stead-state phenomena (elliptic)



Some Basic PDEs

The heat equation (parabolic)

The wave equation (hyperbolic)
2
Utt = C Ugy

The Poisson equation (elliptic)

Viu = f(z,y) v=fs

X



Solving PDEs: Recipe List

A PDE
Solution domain (regular, irregular)
Boundary conditions

Dirichlet B.C. Specify u(x,y,...) on boundaries

Neumann B.C. Specify normal gradient of
u(x,y,...) on boundaries.

Initial values

Stable and convergent numerical algorithm



Numerical Derivatives

: Finite Differences

Introduce finite difference

Forward difference

() ~ f(a+h})b—f(a) +O(h)

Backward difference

(a) ~ f(a)—;‘;(a—h) + O(h)

Central difference

f’(a) ~ flat+h)—f(a—h) 4+ O(h2)

2h

Central difference (2n9 order)

y=f(x)

hi ki b hhh!
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#(a) ~ fla+h)—2f(a)+f(a—h) 4 O(hQ)

h2



Heat Equation Recipe

The PDE: U; = CUyy

The domain: 1-d rod

Boundary conditions (dirichlet) and initial values.
Numerical algorithm (tbd)
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Heat Equation: Explicit Method

Use forward difference for time derivative and
second-order central difference for space derivative:

J.n+1

n+1 n
Up = CUyp, Y =% _ Un —2uf+ul
k h,g

where c=1

@ @
J'Iw

n j.n Jj+1,n

lterate equation; v =

where r = k/h*
Knowing values at time step n allows you to compute
values at time step n+1
This method Is numerically stable and convergent
when r < 1/2 with numerical errors proportional to

Au = O(k) + O(h?)

(1—=2r)u; +ru;_; +ru;y,



Heat Equation: Implicit Method

Use backward difference at time n+1 and a second-
order central difference for space derivative:

J-1,n+1 7J,n+1 J+1,n+1
@ @

U = Clhy, YW _ wh =257 +uily
k h? '

where c=1
Jj.n
Solve linear eqs: (1+ 2r)u} ™" —ru ™) — ruf] = ]
where r =k/h?
Solving linear system of equations at each step is more
numerically intensive than explicit methods.
This method is always numerically stable and
convergent with numerical errors proportional to

Au = O(k) + O(h?)




Heat Equation: Crank-Nicolson Method

Use central difference at time n+1 and a second-
order central difference for space derivative:

j-1,n+1 J,n+l Jj+1,n+1

[ O
n+1 1n n+1 n+1 n+1 n . n n
u; up 1 Uiy — 2w +upTy N wry g — 2ui 4 ugj
k 2 h? h?
@ @
j-1,n j.n j+1,n

Solve linear eqs: (2+2ru;™ — rujy —rujly = (2 = 2r)uf + ruj_ +ruf,
where r =k/h?

Solving linear system of equations at each step is more
numerically intensive than explicit methods but more accurate.

This method is always numerically stable and
convergent with numerical errors proportional to

Au = O(k*) + O(h?).
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Heat Equation

solution of the heat eguation

0.0z

14
14
|
]
]
]
K
|1
1]
L
4
|4
4
|4

..
]

]

N

|4
-4
|4
1
|4
|4
|4

0.m




Numerical Derivatives: Spectral Methods

n (1tk)*n Feature

1 Ik Propagation (no dispersion)
2 k"2 Decay

3 - k"3 Propagation (dispersion)

4 k™4 Growth



Poisson: Spectral Method

Apply the fourier transform to both sides of the equation

f(z,y)
—(kZ + k2)

s Y

Take the inverse Fourier transform of u(x,y) =

Sample solution for:

f(x,y) = sin(rzx) + sin(my)




Reaction Diffusion Equations: Laplacian

ow = F(w +g

Finite Difference 5-point N L( (1} i 2 )
’.E,j ~ _
fast do” R
Finite Difference 9-point L/ 1/6 2/3 1/6
preserves symmetry  V°Vi; = @( i/ 3 —10/3 2/3 )
/6 2/3 1/6

Spectral ViV = FFT_l(—(ki + k;)f/)



Reaction Diffusion Equations: Time Integration

: F(w) = DV2W + g(w)

Lots of time integrators available to solve the PDE

One family of integrators involve Runge-Kutta
(1,2,4) methods

For example the Euler (RK1):
Wil = Wy -+ AtF(W)

RK 2,4 are multi-step and therefore more
computationally expensive but more accurate.



Reaction Diffusion Equation: Putting it all together

The PDE (choose your cardiac cell model)
Solution domain: regular, irregular (phase field)

Boundary conditions are Neumann: no flux or periodic

Initial values

Stable and convergent numerical algorithm. Your pick!



Questions?




EXTRA: Crank-Nicolson

_ _ M B du Pu
Consider the PDE: - =F (u z, b o5 axi)

The CN method is a combination of the forward
Euler method at time step n and backward Euler
method at step n+1.:

n+l _ .n 200

= o 2 Ly F (u T, t, g:: g; (forward Euler)
' /

n+l _ .n 2.\

it N h Frtt (u T, t, gu gté (backward Euler)
. o

n+1 n 2 2
U &f— U; :% [F?H (u z, t, g_” %) + F7 (u . t, % %)] (Crank—Nicolson).
: T dx



