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Abstract. We present a bifurcation analysis of electrical alternans in
the two-current Mitchell-Schaeffer (MS) cardiac-cell model using the the-
ory of δ-decidability over the reals. Electrical alternans is a phenomenon
characterized by a variation in the successive Action Potential Durations
(APDs) generated by a single cardiac cell or tissue. Alternans are known
to initiate re-entrant waves and are an important physiological indicator
of an impending life-threatening arrhythmia such as ventricular fibrilla-
tion. The bifurcation analysis we perform determines, for each control
parameter τ of the MS model, the bifurcation point in the range of τ
such that a small perturbation to this value results in a transition from
alternans to non-alternans behavior. To the best of our knowledge, our
analysis represents the first formal verification of non-trivial dynamics
in a numerical cardiac-cell model.
Our approach to this problem rests on encoding alternans-like behav-
ior in the MS model as a 11-mode, multinomial hybrid automaton (HA).
For each model parameter, we then apply a sophisticated, guided-search-
based reachability analysis to this HA to estimate parameter ranges for
both alternans and non-alternans behavior. The bifurcation point sepa-
rates these two ranges, but with an uncertainty region due to the under-
lying δ-decision procedure. This uncertainty region, however, can be re-
duced by decreasing δ at the expense of increasing the model exploration
time. Experimental results are provided that highlight the effectiveness
of this method.

1 Introduction

An important component of cardiac electrodynamic modeling is the ability to
understand and predict qualitative changes that take place in the dynamics as
model parameters are varied [1, 9, 30]. One well-known change involves a transi-
tion to alternans: a phenomenon characterized by a period-doubling bifurcation
where, while cells are paced at a constant period, their response has different



dynamics between even and odd beats, with one long action potential follow-
ing a short one [24]. Alternans are known to destabilize waves [16] and initiate
re-entrant waves and represent an important physiological indicator of an im-
pending life-threatening arrhythmia such as ventricular fibrillation [20, 28].

About 100 mathematical models [10] have been developed to recreate and
study, to varying degrees of complexity, the electrical dynamics of a cardiac cell
(i.e., cardiomyocyte). A particularly appealing one in terms of its mathematical
tractability is the model of Mitchell and Schaeffer [25], which represents the
cellular electrodynamics using only two state variables: a voltage variable v that
describes the trans-membrane potential, and a gating variable h that describes
the internal ionic state of the cell.
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Fig. 1: Bifurcation analysis of alternans for parameter τ . Parameter values τ ′

and τ ′′ are bifurcation points.

In this paper, we present a bifurcation analysis of electrical alternans in the
two-current Mitchell-Schaeffer (MS) cardiac-cell model1 using the theory of δ-
decidability over the reals [12]. The bifurcation analysis we perform determines,
for each parameter τ of the MS model, the bifurcation point in the range of τ
such that a small perturbation to this value results in a transition from alternans
to non-alternans behavior; see Fig. 1. To the best of our knowledge, our analy-
sis represents the first formal verification of non-trivial dynamics in a realistic
cardiac-cell model.

Our approach to this problem rests on encoding alternans-like behavior in
the MS model as an 10-mode, multinomial hybrid automaton (HA). For each MS
model parameter, we then apply a sophisticated, guided-search-based reachabil-
ity analysis to this HA to estimate ranges for both alternans and non-alternans
behavior. The bifurcation point separates these two ranges, but with an un-
certainty region due to the underlying δ-decision procedure. This uncertainty
region, however, can be reduced by decreasing δ at the expense of increasing the

1 A third current Is, which is not intrinsic to the MS model, is used to stimulate the
cell to produce an action potential.



model exploration time. Experimental results are provided that highlight the
effectiveness of this method.

This paper is organized as follows. Section 2 presents the MS model and
gives a brief overview of the dReach tool that we use to perform reachability
analysis. Section 3 represents the MS model as an HA and then extends the MS
HA to encode alternans behavior. Section 4 formally defines bifurcation analysis
of alternans, and outlines an approach to perform the analysis by reducing it
to a parameter-synthesis problem for the HA that encodes alternans. Section 5
presents our results for the bifurcation analysis of all of the control parameters of
the MS model. Section 6 considers related work. Section 7 offers our concluding
remarks and directions for future work.

2 Background

2.1 Mitchell-Schaefer Model

The Mitchell-Schaefer model is an activator-inhibitor system that describes the
electrical dynamics of a ventricular myocyte. The model involves two coupled,
nonlinear ordinary differential equations of the form:

v̇ = Iin(v, h) + Iout(v) + Is(t)

ḣ =

{
1−h
τopen

v < Vg
−h
τclose

v ≥ Vg
(1)

where v(t) is the transmembrane voltage and h(t) is a gating variable (as in a
voltage-gated ion channel [10]). The voltage ranges from -85 to 20 mV in a real
cardiac cell, but has been scaled to the range [0, 1] in the MS model, and is
expressed as the sum of three currents: an inward current, outward current and
stimulation current. The inward current Iin(v, h) = hv2(1−v)/τin is designed to
replicate the behavior of fast-acting gates found in more complex models. The
outward current Iout(v) = −v/τout is ungated and represents the currents that
act to decrease the membrane voltage. The strength of each respective current
is controlled by the timing parameters τin and τout.

The stimulus current Is is an externally applied current which is used to
periodically excite an action potential in the cell. It is applied every BCL (Basic
Cycle Length) milliseconds for a duration of τs milliseconds. The stimulation
parameters used in this work are [τs, Is]=[1, 0.2].

The gating variable h(t) is dimensionless and scaled between 0 and 1. Pa-
rameters τclose and τopen are time constants that control the opening and closing
of the h-gate, and Vg is the“critical” gating voltage; i.e., the voltage required to
generate an action potential. The four time constants in the model are used to
control the four phases of the cardiac action potential.

For certain parameter values, the Mitchell-Schaeffer model can exhibit al-
ternans, a state which successively exhibits alternating short-long values of the
APD. An example of alternans and non-alternans behavior in the voltage time
series is shown in Fig. 2.



(a) BCL=325 (b) BCL=300

Fig. 2: The voltage time series for the Mitchell-Schaeffer model using parameter
values [τin, τout, τopen, τclose, Vg]=[0.3, 6, 20, 150, 0.1]. The threshold value used to
compute the APD is VT = 0.2. (a) The time series does not meet the definition
of alternans since APD1=APD2. (b) The time series meets the definition of
alternans since the APDs alternate in length (short, long, short long).

2.2 The dReach Tool

dReach [22] is a bounded reachability analysis tool for nonlinear hybrid sys-
tems. It takes a hybrid automaton H, reachability properties P, a numerical
error bound δ ∈ Q+, and an unrolling depth k ∈ N as inputs. It then encodes
a bounded-reachability problem for a hybrid automaton as a first-order for-
mula over the reals and solves the formula using the delta-decision SMT solver
dReal [14]. There are two possible outputs from the dReach tool:

– unreachable: dReach confirms that there is no trace satisfying the reachability
properties up to k discrete jumps.

– δ-reachable: dReach shows that there exists a trace ξ satisfying the reachabil-
ity properties if we consider a user-specified numerical perturbation δ ∈ Q+

in H. The tool also provides a feature to visualize this trace.

We note that the bounded-reachability problem for nonlinear hybrid automata
is undecidable [3]. The tool is implemented in the framework of delta-complete
analysis for bounded reachability of hybrid systems [13], which provides an al-
gorithm for the originally undecidable problem by using approximation (the use
of δ in the analysis).

3 Hybrid Automata for the MS Model and Alternans

In this section, we represent the MS model as a hybrid automaton and extend
this automaton to encode alternans and non-alternans behavior.

3.1 Hybrid Automaton (HM) for the MS model

The stimulus current Is(t) in Eq. 1 is typically a periodic square-wave pulse of
fixed duration (τs). An example of such a wave form is shown in Fig. 3.
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Fig. 3: A typical wave form for the stimulus current Is(t) with period=BCL and
stimulus duration = τs.

To handle this type of stimulus signal in the MS model, we split the voltage
dynamics into two separate modes: a stimulus mode and a non-stimulus mode.
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Fig. 4: The four-mode hybrid automaton for the MS model. The primed version
of variables is used to indicate the reset map of a given transition. Variables not
shown in the reset map are not updated during the jump.

Since the dynamics of variable h is also separable into two modes, we can
represent the MS cardiac-cell model as a four-mode hybrid automaton (HA)
whose schematic is shown in Fig. 4(a). We add an additional state variable τ
that serves as a local clock for time-triggered events; for example, the transition
from a stimulus to a non-stimulus mode or the transition from the current AP
cycle to the next.

Due to the following observations, we can simplify this HA by removing
certain edges:

– v < Vg will not occur in “Stimulation Mode 1”, as the value of v always
increases in this mode



– v ≥ Vg will not occur in “Non-stimulation Mode 2”, as v always decreases
in this mode

– v ≥ Vg occurs before τ ≥ τs in “Stimulus Mode 2”
– For a chosen BCL range, v < Vg occurs before τ ≥ BCL in “Non-stimulus

Mode 1”

3.2 Encoding Alternans and Non-Alternans as Hybrid Automata

We now encode a modified definition of alternans that incorporates transient
cycles and a tolerance threshold rth, 0 ≤ rth ≤ 1, which establishes the relative
difference between APDs. Transients are important since, when starting from
an initial state and a set of parameters that are known to produce alternans,
the voltage signal only settles into period-doubling after the transient phase
is over. Failure to incorporate transient cycles can result in unwanted effects
on the alternans calculation. We add the tolerance threshold rth to take into
account noise and measurement errors in the clinical data that is used to calculate
alternans.
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Fig. 5: Effect of rth on bifurcation point.

Definition 1. Let σ be a (possibly infinite) voltage signal that begins with Ntrans
AP cycles, followed by at least two AP cycles, where Ntrans is the number of
transient cycles. Let τ1 > 0 and τ2 > 0 be the APDs of any two consecutive
AP cycles after the initial Ntrans cycles in σ. Further, let r = τ2

τ1
. We say

that σ exhibits alternans with respect to a given rth when |r − 1| > rth is an
invariant. Likewise, we say that σ exhibits non-alternans with respect to rth
when |r − 1| ≤ rth is an invariant.

As opposed to using the absolute value of the difference of consecutive APDs
(|APD1−APD2|) for the definition of alternans, Definition 1 yields a normalized
(between 0 and 1) basis for comparison. Note that as rth is increased, the esti-
mated bifurcation point is moved away from the exact value and farther into the
alternans region. In the limit as rth approaches zero, the estimated bifurcation
point approaches the exact value, as shown in Fig. 5.



We first explain the steps used to encode alternans as an HA based on HM ,
and then follow similar steps to encode non-alternans as another HA. We con-
sider alternans as a safety property and characterize it using a so-called safety
automaton [2]. For our purposes, a safety automaton is an HA with modes ad-
ditionally marked as accepting or non-accepting, and with the property that no
accepting mode can be reaching from a non-accepting mode. After first deter-
mining that HM has completed Ntrans transient cycles, our safety, or observer,
automaton HO repeatedly computes two successive APDs τ1 and τ2, and checks
if the condition for alternans (Definition 1) is violated. If so, the automaton
enters a trap (i.e. non-accepting) state, from which it never exits. If no such
violation is detected, then the observed sequence of cycles is accepted. Thus, in
HO, there is a single non-accepting mode named “Trap”; all other modes are
accepting. Note that HO uses the v and τ values from HM to determine when a
cycle has completed and to compute APD values.
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Fig. 6: The hybrid automaton HO for the observer. The number after the colon
in each mode name gives a number to the mode. Mode “Trap” is non-accepting;
all other modes are accepting.

Fig. 6 presents observer HA HO for the alternans problem. As, by definition,
APD is the time period in each AP cycle during which v ≥ VT , an APD event
can occur only in “Stimulus Mode: 1” and “Non-stimulus Mode: 1” in HM . So
to compute APD, the observer splits “Non-stimulus Mode: 1” into two modes:



“APD Mode” (when v ≥ VT ) and “Non-APD Mode” (when v < VT ). As the
“Stimulus Mode: 1” is at most τs and τs (typically 1 ms) is negligible compared
to the duration of “Non-stimulus Mode: 1”(> 200 ms), we ignore the event
v ≥ VT inside “Stimulus Mode: 1” for the APD computation. This helps us
avoid splitting “Stimulus Mode: 1” and thus reduces the number of modes in
the observer HA.
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Fig. 7: The 11-mode hybrid automaton HA for alternans.

To determine whether HM completes Ntrans transient cycles, we add a
counter CN in HO which is increased by 1 during the jump from “Non-APD
Mode: 3” to “Stimulus Mode 2: ”. In (Ntrans + 1) cycle, HO computes τ1 in
“APD Mode: 2” and then compute τ2 in the consequent cycle in “APD Mode: 6”.
When v < VT ∧ |r − 1| > rth does not hold, a transition from“APD Mode: 6”
to “Trap Mode: 9” occurs, i.e., the alternans property is violated. All the other
modes are the accepting states for this safety (Buechi) automaton.

To check the alternans property, we combine HM and HO into a single au-
tomaton HA as shown in Fig. 7. This approach is known as shared-variable
composition [4].

Let Θ0 be a set of initial states in HO. We say Θ0 produce alternans when:

∃θ0 ∈ Θ0.“Trap Mode: 11” is not reachable in HA. (2)



Similar to Fig. 7, we can encode the dual behavior, non-alternans, as an HA
HN by inter-changing guard conditions of the outgoing transitions in “APD
Mode: 7”. We then say that that Θ0, a set of initial states in HN , produces
non-alternans when:

∃θ0 ∈ Θ0.“Trap Mode: 11” is not reachable in HN . (3)

4 Bifurcation Analysis of Alternans using dReach

To perform bifurcation analysis of alternans for a parameter τ of the MS model,
we need to augment the state vector of both HA and HN with τ by adding τ̇ = 0
in each mode. Let Rτ = [τ , τ ] be the set of initial values of τ . Now we define the
set of initial states of both augmented automata as Θa0 = θ0 × Rτ , where θ0 is
some nominal initial state from where both HA and HN start operating.

Now we will redefine the problem (2) and (3) based on the augmented au-
tomata. Let Θa0 be a set of initial states in the augmented automata. We say Θa0
produce alternans, when

∃θa0 ∈ Θa0 .“Trap Mode: 11” is not reachable in augmented HA. (4)

Algorithm 1 Bifurcation Analysis on dReach

1: procedure Bifurcation-Analysis(τ ,Rτ ,δ0)
2: add τ̇ = 0 in HA and HN
3: AR← {} NR← {} UR← Rτ δ ← δ0
4: while UR meets desired precision criteria do
5: UR← RecursiveSearch(δ,UR)
6: Decrease δ
7: end while
8: end procedure

Similarly, we say Θa0 produce non-alternans, when

∃θa0 ∈ Θa0 .“Trap Mode: 11” is not reachable in augmented HN . (5)

Algorithm 1 serves as an outline of our bifurcation analysis of alternans,
for τ varying in range Rτ , using dReach-based reachability analysis on prob-
lems (4) and (5). The algorithm will partition Rτ into three regions: 1) Alternans
Region (AR), 2) Non-alternans Region (NR) and 3) Uncertainty Region (UR)
which contains the bifurcation point (BP).

Algorithm 1 starts by augmenting HA and HN with τ and initializing AR,
NR, UR and δ. In the while-loop, it then calls a recursive search procedure to
reduce the size of the UR, while concomitantly computing AR and NR. The



1: procedure RecursiveSearch(UR,δ)
2: Θa0 = θ0 ×UR
3: α← dReach(HA, Θa0 , δ)
4: if α = unsat then
5: NR← NR ∪UR
6: return {}
7: end if
8: β ← dReach(HN , Θa0 , δ)
9: if β = unsat then

10: AR← AR ∪UR
11: return {}
12: end if
13: if |UR| ≤ δ then
14: return UR
15: end if
16: (URl,URr)← Bisect(UR)
17: return RecursiveSearch(URl, δ) ∪RecursiveSearch(URr, δ)
18: end procedure

algorithm terminate when size of the UR meets the desired precision criteria
(i.e., the UR is small enough).

In the recursive search procedure, we first initialize Θa0 , which we will use for
both automata. We then run dReach on problem (4). If dReach returns unsat
for this problem, we add UR to NR and return the empty set for the new UR. If
it returns δ-sat, however, we run dReach on the dual problem as shown on line 8.
If dReach returns unsat for the dual problem, we add UR to AR and return the
empty set for the new UR.

In both cases, when dReach returns δ-sat and the size of UR becomes less
than or equal to current δ, we return UR as the new uncertainty region as
shown on line 14. If, however, the size of UR is greater than δ, we bisect UR
and recursively call the search method on both branches, returning their union
as the new UR.

Fig. 8 provides an example of our bifurcation analysis of alternans. Fig. 8(a)
shows the exact bifurcation analysis that we wish to achieve using δ-decidability
over the reals. Fig. 8(b) shows the bifurcation analysis using Algorithm 1. Ini-
tially, the entire range is considered as an UR in Algorithm 1. The algorithm
then iteratively reduces UR and increases AR and NR. Fig. 8(c), shows how the
recursive search procedure, in a binary-search-tree-like fashion, computes AR
and NR and reduces UR.

5 Results

In this section, we present the results of performing bifurcation analysis of alter-
nans over five parameters in the MS model using Algorithm 1. When we perform
bifurcation analysis for a parameter, we fix the other parameter as follows:
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Fig. 8: Bifurcation analysis of alternans. Red: AR, Green: NR, Gray: UR.
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Fig. 9: Bifurcation analysis of alternans with respect to BCL for three different
rth values.

[Vg, rth, Ntrans,BCL, τin, τout, τopen, τclose] are set to [0.1, 0.2, 2, 300, 0.3, 6, 20, 150]
unless specified otherwise. The fixed initial condition θ0 for HA and HN were
taken as v(0) = 0.2, h(0) = 1 with CN (0), τ(0), τ1(0) and τ2(0) all set to zero.
In all cases, we consider voltage signal that contains Ntrans + 2 AP cycles.

For the bifurcation analysis of alternans for BCL, we consider the range as
[300, 330], δ0 = 0.5. We perform the bifurcation analysis for three different rth
values. Fig. 9, for three different rth,illustrates the partitioning of the range of
BCL into three regions: AR, NR and UR and Table. 1 shows the corresponding
subranges computed by Algorithm 1. We also overlay the simulation-based bi-
furcation diagram to help visualizing the position of the bifurcation point. The
sequence of figures illustrate how the bifurcation region returned by dReach
approaches the exact bifurcation point as rth approaches zero.

We summarize the bifurcation analysis for other parameters in Table 2 for
rth = 0.01 and Fig. 10 shows their bifurcation diagrams. Note that we are not
able to find any BP for τopen. All computation is performed using Intel Core
i7-4770 CPU @ 3.40GHz × 8 on Linux platform.



rth AR NR UR Runtime (s)

0.1 [300, 311.91] [311.912, 350] (311.91, 311.912) 80, 209

0.05 [300, 318.564] [318.567, 350] (318.564, 318.567) 81, 012

0.01 [300, 332.4714] [332.4716, 330] (332.4714, 332.4716) 81, 162

Table 1: Parameter ranges for alternans and non-alternans and uncertainty re-
gion.

Parameter AR NR UR Runtime (s)

τin [0.3, 0.3729] [0.3730, 0.4] (0.3729, 0.3720) 176010

τout [4.9995, 6] [3, 4.9990] (4.9990, 4.9995) 66000

τopen [7.5, 20] − − 110231

τclose [131.8586, 150] [130, 131.8584] (131.8584, 131.8586) 84938

Table 2: Parameter ranges for alternans and non-alternans and uncertainty re-
gion.

6 Related Work

Reachability analysis has emerged as a promising solution for many biological
systems [6, 32, 18, 11]. SMT-based verification using dReal [15] has been applied
in various problems [26, 19, 21, 5, 8, 27]. Liu et al. successfully applied SMT-based
reachability analysis using dReach in identifying patient-specific androgen abla-
tion therapy schedules for postponing the potential cancer relapse in [23].

Brim et al. present a bifurcation analysis technique to analyze stability of
genetic regulatory networks in [7]. They first express various stability-related
properties by a temporal logic language extended by directional propositions and
then verify those properties by varying the model parameters. Even though they
apply their method only on piece-wise affine dynamics, the authors claim that
it can be extended for piece-wise multiaffine dynamics. The method, however, is
not applicable for general nonlinear dynamical systems.

In [17], Huang et al. presents a reachability analysis technique for a hybrid
model of cardiac dynamics for a 1-d cable of cells and show the presence of
alternans based on computed reachtube. The authors, however, neither define
nor verify the alternans property formally. They just do reachability analysis for
two BCL values and show, by visual inspection, that one BCL value produces
alternans and another does not.

7 Conclusions

In this paper, we have applied reachabilty analysis to identify the bifurcation
points that represent the transition to alternans in the Mitchell-Schaefer cardiac-
cell model. Our bifurcation analysis is performed using the bounded-reachability
tool dReach [22], and uses a sophisticated guided-search strategy to“zoom in”
on the bifurcation point in question. Since this tool is designed to work with
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Fig. 10: Bifurcation analysis of alternans with respect to four parameters of the
MS model with rth = 0.01.

nonlinear hybrid systems, we converted the original MS model into a hybrid
automaton (HA), and further extended this HA to encode alternans- and non-
alternans-like behavior.

For future work, we intend to study other models where alternans are not due
to solely the voltage dynamics, as in the MS model. Rather, they may also be
caused by the calcium dynamics, as both mechanisms have been found to occur
in cardiac cells [29]. Such models can have multiple BPs and our algorithm will
automatically find all of them, as it searches for BPs in each branch of the
recursive search tree.

We also plan to extend the cell-level bifurcation analysis we conducted to a
1-d cable of cells. Traveling waves can exhibit alternans along cables [31]. Doing
so, will require us to extend our reachability analysis from ODEs to PDEs. We
can also extend our analysis by varying multiple parameters simultaneously;
currently, we only vary one parameter at a time. We can accomplish this by
augmenting the state vector with each of these parameters.
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