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ABSTRACT

The popularity of rule-based flocking models, such as Reynolds
classic flocking model, raises the question of whether more declar-
ative flocking models are possible. This question is motivated by
the observation that declarative models are generally simpler and
easier to design, understand, and analyze than operational models.
We introduce a very simple control law for flocking based on a
cost function capturing cohesion (agents want to stay together) and
separation (agents do not want to get too close). We refer to it as
declarative flocking (DF). We use model-predictive control (MPC) to
define controllers for DF in centralized and distributed settings. A
thorough performance comparison of our DF-based approach with
Reynolds model, and with more recent flocking models that use
MPC with a cost function based on lattice structures, demonstrate
that DF-MPC vyields the best cohesion and least fragmentation, and
maintains a surprisingly good level of geometric regularity while
still producing natural flock shapes similar to those produced by
Reynolds model. We also show that DF-MPC has high resilience to
Sensor noise.
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1 INTRODUCTION

Flocking is a collective behavior exhibited by a large number of
interacting agents possessing a common group objective [14]. The
term is most commonly associated with birds, and more recently,
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drones. Examples include foraging for food, executing a predator-
avoidance maneuver, and engaging in migratory behavior.

With the introduction of Reynolds model [21, 22], rule-based
control became the norm in the flocking community. Specifically,
in this model, at each time-step, each agent executes a control law
given in terms of the weighted sum of three competing forces to
determine its next acceleration. Each of these forces has its own rule:
separation (keep a safe distance away from your neighbors), cohesion
(move towards the centroid of your neighbors), and alignment (steer
toward the average heading of your neighbors). As the descriptions
suggest, these rules are executed by each agent in a distributed
environment with limited-range sensing and no communication.

The popularity of Reynolds model and its many variants raises
the question: Is there a more abstract declarative form of control for
flocking? This question is important because declarative models
are generally simpler and easier to design, understand, and analyze
than operational models. This is analogous to declarative programs
(e.g., functional programs and logic programs) being easier to write
and verify than imperative programs.

We show that the answer to this question is indeed positive by
providing a very simple control law for flocking based on a cost
function comprising two main terms: cohesion (the average squared
distance between all pairs of agents) and separation (the sum of
inverse squared distances between all pairs of agents). That is it.
For example, no term representing velocity alignment is required.
The cost function specifies what we want as the goal, and is hence
declarative. In contrast, Reynolds model does not formalize a goal.
Its update rules are operational, and are designed to achieve goals
described informally as cohesion, separation, and velocity align-
ment.

Executing declarative control amounts to finding the right bal-
ance between attracting and repelling forces between agents. We
refer to this approach as Declarative Flocking (DF). We use model-
predictive control (MPC) to define controllers for DF, and refer
to this approach as DF-MPC. We define a centralized version of
DF-MPC, which requires communication, and a distributed version,
which does not.

Previous MPC-based aproaches to flocking exist [28, 29, 31] and
are designed to conform to the a-lattice model of flocking proposed
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in [14]. a-lattices impose a highly regular structure on flocks, re-
quiring all neighboring agents to be distance d apart, for a specified
constant d. This kind of structure is seen in e.g. beehives, but is not
witnessed in many other natural and engineered settings, and it is
not imposed by Reynolds model.

In this paper, we show, via a thorough experimental evaluation,
how the performance of controllers based on centralized and dis-
tributed DF-MPC compares to that of controllers based on Reynolds
model [21, 22], Olfati-Saber’s potential-based approach [14], (a vari-
ant of) Zhan and Li’s centralized lattice-based MPC approach [27,
28], and Zhang et al.’s distributed lattice-based MPC approach [29].
We consider performance measures that capture multiple aspects
of flocking behavior: number of sub-flocks (flock fragmentation),
maximum sub-flock diameter (cohesion), velocity convergence, and
a new parameter-free measure of the geometric regularity of the
formation.

Our experimental results demonstrate that DF-MPC yields the
best cohesion and least fragmentation, and produces natural flock
shapes like those seen in Reynolds model. Also, distributed DF-MPC
maintains a surprisingly good level of geometric regularity. We also
analyze the resiliency of DF-MPC and lattice-based MPC to sensor
noise. Our results demonstrate a remarkably high level of resiliency
on the part of DF-MPC in comparison with these other approaches.

The rest of the paper is organized as follows. Section 2 presents
the rule-based, potential-based, and lattice-based MPC approaches
mentioned above. Section 3 defines our declarative flocking ap-
proach. Section 4 introduces our performance measures for flocking
models. Section 5 presents our experimental results and perfor-
mance evaluation. Section 6 discusses related work. Section 7 offers
concluding remarks and directions for future work.

2 MODELS OF FLOCKING BEHAVIOR

We consider a set of dynamic agents A = {1,...,n} that move
according to the following discrete-time equation of motion:
xi(k +1) = xi(k) + dt - vi(k), |vi(k)| <0 Y]
vi(k +1) = vi(k) + dt - ai(k), |ai(k)| < a, @)

where x;(k), vi(k), a;j(k) € R™ are respectively the position, veloc-
ity and acceleration of agent i € A, in m-dimensional space at time
k, and dt € R is the time step. Velocities and accelerations are
bounded by @ and g, respectively.

In most flocking models, agents update their motion by changing
their acceleration. In this sense, a;(k) represents the control input
for agent i at time k. Accelerations are computed every 7 time steps,
n € Z*, and the time step at which accelerations are computed is
called the control step. Accelerations remain constant during the
interval from one control step to another.

The configuration of all agents is described by the vector x(k) =
[xI'(k) ... xI())T € R™™. Let v(k) = [0l (k) ... o] ()] €
R™" and a(k) = [alT(k) .. aZ(k)]T € R™ ™ Then the equation
of motion for all agents can be expressed as

x(k + 1) = x(k) + dt - v(k), 3)
v(k +1) = v(k) + dt - a(k), )

The local neighborhood of agent i is defined by the set of other
agents, called neighbors, within a given distance from i, mimicking
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Figure 1: Examples of o-lattice a) and quasi a-lattice b). Solid
lines connect agents in the same neighborhood that have dis-
tance d. Dashed lines connect those with have distance d + ¢
for € < § (the tolerance).

the agent’s visibility sphere. For an interaction radius r > 0 and
configuration x, the set of spatial neighbors of agent i, N;(x) C A,
is given by:

Ni) ={jeAlj#inlxi-xl<r}, ©)

where || - || denotes the Euclidean norm.

For configuration x € R™ ", we define the associated proximity
net G(x) = (A, E(x)) as the graph that connects agents within their
interaction radius:

8(x)={(i,j)€ﬂ><.7l|||x,~—x]~||<r,i;éj}, (6)

To capture the regular geometry of flocks, Olfati-Saber intro-
duced the notions of a-lattices, i.e. configurations where each agent
is equally distant from its neighbors, and quasi a-lattices, i.e. con-
figurations that are a-lattices modulo a small error in the distances
[14]. The scale parameter d defines the ideal inter-agent distance.

Definition 2.1 (a-lattice [14]). A configuration x € R™ " is called
a-latticeif for all i € A and all j € N;(x), ||x; — xj|| = d, where d €
R is the scale of the a-lattice. For tolerance § € R*, a configuration
x € R™ ™ is called a quasi a-lattice if for all i € A and all j € N;(x),
[llx; = xjll = d| < 6.

2.1 Sensing noise

We extend the classical equations of motion, Egs. (1)-(2), with sens-
ing noise affecting how each agent perceives positions and velocities
of its neighbors. Existing work has put little focus on flocking dy-
namics subject to noise, which is unfortunately unavoidable in
realistic natural and engineered flocks.

For actual positions x(k) and velocities v(k) at step k, let X(k) and
v(k) denote the possibly noisy versions of these quantities sensed
by some agent, defined by:

x(k) = x(k) + nx(k) and v(k) = v(k) + nv(k), (7)

where nx(k) and nv(k) in R™" are vectors of independent and
identically distributed (i.i.d.) random variables. The position noise
nx(k) and velocity noise nv(k) are distributed according to Gauss-
ian distributions with mean 0 and standard deviation oy and o,
respectively. We stress the dependency on k because noise variables
are independent across control intervals. (In our performance evalu-
ation, we ran experiments for 10 noise levels, with —0.2 < o < 0.2
and 0.1 < 6 < 1.0.)

In centralized flocking algorithms, where agent decisions are
computed by a single controller with information about the whole
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population, we use Eq. 7 to define noisy measurements. In the
distributed setting, sensing noise is independent for each agent.
We denote the noisy measurement of agent i by x”*(k) and v’ (k),
where positions and velocities are noisy for all agents except agent
i
x>1(k) =[%] (k)...xT(k)... %L (k)]" and (8)
Vik) =[o] (k) ... 0T (k)... oL ()T, )

with %1(k), ..., Xp(k) and 01(k), . . ., On(k) defined as per (7); implic-
itly, for each agent i and each other agent j, the noise distribution is
sampled independently to compute the JEJT (k) component of x”* (k).

2.2 Reynolds rule-based model

In Reynolds rule-based distributed model [21, 22], agents follow
simple rules to compute their accelerations from the positions and
velocities of their neighbors. The rules are illustrated in Figure 2.
They do not explicitly specify the desired flocking formation as an
objective; rather, flocking emerges from the interaction rules.

Specifically, each agent i € A updates its acceleration a;(k)
at control step k by considering the following three components
(adapted to include sensing noise):

(1) Alignment: agents match their velocities with the average
velocity of nearby agents.

a®l(k) = wg; - (k) | - vik) | (10)

: 2

(%P1 ’
INGG= N e
(2) Cohesion: agents move towards the centroid of the agents in

the local neighborhood.

1
R =we || g ) ZR) x| ()
NGO i)

(3) Separation: agents move away from nearby neighbors.

1 xi(k) — %;(k)

Fk) = ws - ———— —
k) =ws o T EOEECE

(12)
jEN; (%71 (k)
The cohesion and alignment rules help form and maintain a closely
packed, flock-like formation. The separation rule prevents agents
from coming too close to each other, thus reducing crowding and
collisions.

Non-negative constants w,j, we and wy are the weights for each
acceleration component. Typically, a smaller interaction radius
(hence a smaller neighborhood) is used for the separation rule,
because it is significant only when agents are very close to each
other. The overall acceleration in Reynolds model is given by:

ai(k) = a® (k) + aS(k) + as (k). (13)

2.3 Olfati-Saber’s potential-based model

In potential-based flocking models, the interaction between a pair
of agents is modeled by a potential field. It is assumed that an agent
is a point source, and it has a potential field around it, which ex-
erts a force, equal to its gradient, on other agents in its range of
influence. The potential field has circular symmetry and hence is a
function of distance from the source. In the work of Olfati-Saber
[14], the potential function ¥, for a pair of agents has its minimum
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at the desired inter-agent distance d of the desired a-lattice. Outside
the interaction radius r, the potential function is constant, so the
potential field exerts no force. The exact definition of i/, is com-
plicated: it is the definite integral of an “action function” ¢, that
is the product of a “bump function” p;, and an uneven sigmoidal
function ¢. The control law computes an agent’s acceleration based
on the sum of the forces from all other agents in its neighborhood
and a velocity alignment term.

2.4 MPC-based models

Model predictive control (MPC) is a well-established control tech-
nique that works as follows [4]: at each control step k, it computes
the optimal control sequence (agents accelerations in our case) that
minimizes a given cost function with respect to a predictive model
of the controlled system and a finite prediction horizon of T control
steps. Then, the first control input of the optimal sequence is ap-
plied (the remainder of the sequence is unused), and the algorithm
proceeds with a new iteration.

Two main kinds of MPC-based flocking models exist, centralized
and distributed. Centralized models assume that information about
positions and velocities of all agents is available to compute their
optimal accelerations. Formally, at each control step k, it solves the
following optimization problem:

T-1
Je+2 Y Ntk +n-K TRIZ (4)

min
a(k|k),a(k+nlk),..., k'=0

a(k+(n—-1)---T|k)eA

where a(k + 1 - k’ | k) is the control input (accelerations) for all
agents at predicted control step k + 7 - k’ starting from control step
k. The first term J(k) is the primary model-specific cost function
that the controller seeks to optimize within the prediction horizon;
it is implicitly a function of the predicted configurations during
the prediction horizon for time step k. The second term is standard
for MPC problems and penalizes large control inputs, with weight
A>0.

In distributed flocking models, each agent computes its optimal
acceleration based only on information about its neighbors. Each
agent i solves an optimization problem of the form:

T-1
Jiky+ 2= 3 flaitk+ -k T RIF - (15)

min
ai(k|k),ai(k+nlk),..., =0

ai(k+(n-1)-Tlk)eA

where aj(k+n-k’ | k) is the acceleration for agent i at predicted
control step k + 17 - k’ starting from step k, and J;(k) is the model-
specific cost function for agent i. In distributed MPC, an agent has
no way to know current or future control decisions of its neigh-
bors, which are needed to make accurate predictions about their
behavior. To address this problem, some approaches allow agents
to communicate their local control decisions or future positions
(e.g. [28, 31]), or assume that neighbors follow some default motion
law, e.g., they move with constant velocities. We adopt the second
strategy, because it does not require any communication.

The majority of existing MPC-based approaches to flocking are
designed to optimize the regularity of the flock, by penalizing con-
figurations where neighboring agents are not exactly distance d
apart, i.e., configurations that differ from an a-lattice [27-29, 31].
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Figure 2: Interaction rules for flocking behavior in Reynolds Model. Image taken from [19].

We call these approaches lattice-based MPC. Next we describe rep-
resentative centralized and distributed lattice-based MPC flocking
models, which we extend to account for sensing noise. The cen-
tralized model is a variant of a model by Zhan and Li [27, 28]. The
distributed model is by Zhang et al. [29].

2.4.1 Centralized lattice-based MPC flocking. The centralized
lattice-based MPC problem is defined as:

T T-1
D7 llg (xtk + - K TR) P42 Y laCke+rn-k” | k)l

k|k 1’11111’1 k
iﬁkki;?ﬁ)ff’r'\i’)g;; k=1 k=0
(16)
where x(k+7-k’ | k) is the configuration of the system at predicted
control step k + - k” starting from control step k, following the
dynamics:

xi(k | k) = xi(k) vi(k | k) =9i(k)
xilk+n- kK +1|k)= xi(k+n-k" | k)+dt-vi(k+n-k"| k)
vilk+n-k"+1|k)= vi(k+n-k’ | k)+dt-ai(k+n-k"|k),
17)
where the initial state of the prediction window is given by noisy
measurements.
For configuration x, g(x) captures the a-lattice irregularity as
the total deviation between agent distances and d:

2
d'in

Xji — ol , with xj; = xj —x;. (18)

lgell? = >

(i,j)€&(x)

This model is inspired by [27] and [28] but differs from both:
in [27] the cost function also contains a velocity alignment term,
which the same authors removed in their subsequent work, while
in [28], “impulsive MPC” is used, which means that agents directly
control their velocities (instead of accelerations), an abstraction
that allows physically unrealizable accelerations.

2.4.2 Distributed lattice-based MPC flocking. In the distributed
MPC flocking model of Zhang et al. [29], each agent i controls its
acceleration based on position and velocity measurements of the
neighbors and assumes they have constant velocity (zero accelera-
tion) during the prediction horizon. Similarly, the set of neighbors
of i is assumed invariant during the prediction horizon, and we

denote it by N;(k) = N;(x(k)). The control law for agent i is:

T
D7 lgi (xk + - K k) 112+

min
ai(k|k), ai(k+nlk),...,  £=

ai(k+(n-1)-T|k)eA
T-1
A Z lailk +n -k [R)IZ (19)
k'=0
Similar to the centralized flocking, future dynamics of i is deter-
mined by equation (17).
while i’s neighbors j € Nj(k) have constant velocity:

xj(k | k) = %(k) xj(k+n-k +1| k) = xj(k+n-k" | k)+dt-5;(k).

For configuration x, g;(x) is defined in a similar way to Eq. (18)
and quantifies how much i’s neighborhood N;(k) deviates from an

a-lattice:
gl =

JEN;(k)

2
d- xji

R (20)

xj,-

3 DECLARATIVE FLOCKING

This section introduces centralized and distributed versions of our
Declarative Flocking (DF) model, and presents a flocking algorithm
based on MPC. Our formulation is declarative in that it consists of
just two simple terms: (1) a cohesion term based on the average
squared distance between pairs of agents, to keep the flock together,
and (2) a separation term based on the inverse squared distances
between pairs of agents, to avoid crowding. These two terms repre-
sent opposing forces on agents, causing agents to move towards
positions in which these forces are balanced. Unlike the majority
of existing MPC-based approaches that are designed to optimize
conformance to an a-lattice, our design does not impose a specific
geometric structure.

3.1 Centralized DF model

The cost function J for our centralized DF model contains the two
terms described above. Both the cohesion term and the separation
term consider all pairs of agents. , The weight w of the separation
term provides control over the density of the flock.

2 1
o= > > gl e — @D
AT (AT - A A il
The control law is Eq. (14) with J(k) equal to

SL_ JC k40K | F)).
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3.2 Distributed DF model

The cost function J for our distributed DF model is similar to the
centralized one, except that both terms are limited to consider pairs
of agents that are neighbors.

D)= L . Pt _
Re= s 2 bl e ) g @)

JjeNi(k) JjeNi(k)

The control law for agent i is Eq. (15) with J;(k) equal to
Shoo JP kK | K)).

4 MEASURES OF FLOCKING PERFORMANCE

We introduce four key measures of flocking performance. A single
measure is insufficient, because flocking is indeed characterized by
multiple desirable properties, such as aligned velocities and cohe-
sion. Olfati-Saber introduces four main properties for flocking [14],
informally described as:

(1) the group of agents stays connected in a unique flock, i.e., no
sub-flocks and fragmentation should emerge;

(2) the group remains cohesive, in a close-knit formation;

(3) the group moves in a coherent way as if it was a unique body,
i.e., agents’ velocities are aligned; and

(4) the group maintains a regular geometry (in the a-lattice
sense).

We introduce the following four measures to capture these four
requirements. An important concept in these definitions is a sub-
flock, which is a set of interacting agents that is too far apart from
other agents to interact with them. Formally, a sub-flock in a config-
uration x corresponds to a connected component of the proximity
net G(x). Let CC(x) C 27 be the set of connected components of
the proximity net G(x).

(1) The number of connected components of the proximity net
quantifies connectedness—or, equivalently, fragmentation—of the
flock. There is no fragmentation when |CC(x)| = 1. Fragmentation
exists when |CC(x)| > 1. Fragmentation may be temporary or, if
sub-flocks move in different directions, permanent.

(2) The maximum component diameter, denoted D(x), quantifies
cohesion. It is defined by

D(x)= max D(x,A’) (23)
A'eCC(x)

where D(x, A’) is the diameter of connected component A’

D(x,A’)y= max x| (24)

(L, ))eA'XA
1#j

Note that when all agents are isolated, i.e., CC(x) = J;c.a {{i}},
D(x) = —oo because the domain of the max function in Equation 24
is empty when A’ is a singleton. Note that we consider the maxi-
mum diameter of a sub-flock in order to make this measure more
independent of connectedness. If we instead considered the overall
diameter of the entire (possibly fragmented) flock, any flocking
model that did poorly on connectedness would also do very poorly
on this measure.

(3) The wvelocity convergence measure, adopted from [29], quanti-
fies the average discrepancy between each agent’s velocity and the
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average velocity of the flock. In particular, we extend the measure
of [29] to average velocity convergence values across sub-flocks:

2
| /|ﬂ'|

(4) To measure the regularity of the geometric structure of a flock,
as reflected in the inter-agent spacing, we introduce a parameter-
free and model-independent irregularity measure I(x). For a con-
nected component (sub-flock) A’, it is defined as the sample stan-
dard deviation of the distances between each agent in A’ and its
closest neighbor. Thus, the measure penalizes configurations where
there is dispersion in inter-agent distances, while not imposing any
fixed distance between them (unlike -lattices).

Let CC’(x) = CC(x) \ Ujeq {{i}} be the set of connected com-
ponents where isolated agents are excluded. For |CC’(x)| = 0 (or
equivalently, |CC(x)| = |A|), i.e., all agents are isolated, we set the
irregularity I(x) = 0, which is the optimal value. This reflects the
fact that a single point is a regular structure on its own. Moreover,
such a configuration is already highly penalized by |CC(x)| and
VC(v). For |CC’(x)| > 0, the measure is defined by:

Ljew Y
[Zee o= (Bar)

ICC)l

YA eCC(x)
VC(x,v) =

(25)

Yarecc O (&Jieﬂ’ min;jz; ”xij”)

160 = ICC7]

(26)
where o(S) is the standard deviation of the multiset of samples S
and (4 is the sum operator (or disjoint union) for multisets.

An a-lattice (see Def. 2.1) has the optimal value of I(x), i.e.,
I(x) = 0, since all neighboring agents are located at the same
distance d from each other, leading to zero standard deviation for the
term o ({d, d, . ..,d}). This shows that I(x) captures the regularity
underlying the concept of a-lattice.

We introduce this measure because previous measures of regular-
ity or irregularity, such as those in [14, 28, 29], measure deviations
from an a-lattice with a specified inter-agent distance d and are
therefore inapplicable to flocking models, such as Reynolds model
and our DF models, that are not based on «-lattices and do not
have a specified target inter-agent distance. Also, our irregularity
measure is more flexible than those based on a-lattices, because it
gives an optimal score to some configurations that are geometrically
regular but not a-lattices. For example, consider a configuration x
in which the agents are on the vertices of a grid with edge length e,
and the interaction radius is equal to the length of the diagonal of
a box in the grid. This configuration has an optimal value for our
irregularity measure, i.e., I(x) = 0, because the distance from every
agent to its nearest neighbor is e. This configuration is not an a-
lattice and hence does not nave an optimal value for the irregularity
measures used in prior work.

5 PERFORMANCE EVALUATION

We compare the performance of the models of Section 2 with the
newly introduced DF flocking models in the 2-dimensional setting.
In the first set of experiments (Section 5.1), we evaluate the per-
formance measures illustrated in Section 4. In the second set of
experiments (Section 5.2), we analyze the resilience of the algo-
rithms to sensor noise. It is important to note here that we do not
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evaluate performance for specific motion objectives such as total
traveled distance. Only flocking behavior is considered here.

By Olfati-Saber model we refer to Algorithm 1 that is defined in
equation (23) in [15]. This model does not have a group objective,
in accordance with the flocking models considered in this paper.

For consistency with the experimental settings of [29], the lattice-
based MPC problems are solved using the interior point method im-
plemented in MATLAB’s fmincon function. Our DF-MPC problems
are solved using gradient descent optimization. Unless otherwise
specified, the population size is n = 30, the simulation length is
100, dt = 0.3,0 =8, a=1,r =84,d =7,T =3,and A = 1.
These parameter values are the same ones reported in [29]. The
control interval is 0.9, i.e., n = 3, for our centralized and distributed
DF-MPC. For other models, = 1 as they do not distinguish control
interval from time step. Following the settings in the OpenSteer
project [20], the parameters for Reynolds model are r. = 9, rg = 5,
ral = 7.5, we = 8, wg = 12, and w,; = 8. The weight o of the
separation term in our centralized and distributed DF-MPC is 2000
and 30, respectively. As in [29], initial positions and initial veloc-
ities of agents are uniformly sampled from [-15, 15]? and [0, 2],
respectively.

5.1 Performance Comparison of Flocking
Algorithms

Fig. 3 shows examples of final formations for all flocking models.
In particular, we chose configurations where fragmentation did
not occur. We observe that the formations for lattice-based MPC
algorithms have spread-out, rigid structures, consistent with the
design objective of maximizing the a-lattice regularity. On the other
hand, Reynolds and our DF MPC models result in more natural
flock shapes.

In Fig. 4, we compare the performance measures for the different
flocking models. The graphs are obtained by averaging the per-
formance measures at each time-step for 100 runs. Regarding the
number of connected components (sub-flocks), our centralized DF-
MPC registers the best behavior, rapidly stabilizing to an average of
1 component (see plot a). The next best are Reynolds Model and our
distributed DF-MPC with 1.2 sub-flocks and 1.6 sub-flocks on aver-
age, respectively The lattice-based MPCs and Olfati-Saber instead
lead to constant fragmentation, with more than 2 sub-flocks for the
distributed lattice-based MPC, 6 for the centralized lattice-based
MPC, and more than 8 for Olfati-Saber’s model.

This ranking is confirmed by the diameter measure (plot b),
where our centralized and distributed DF-MPC and Reynolds model
show the best cohesion, outperforming the lattice-based approaches.
Recall that this measure indicates the maximum diameter over all
sub-flocks, not the diameter of the entire population. As a con-
sequence, fragmentation tends to decrease diameter values since
it produces sub-flocks with fewer individuals. This explains why
Olfati-Saber’s model has smaller diameter measure than centralized
lattice-based MPC, which in turn has smaller diameter measure
than the distributed variant.

In our centralized DF-MPC, oscillations can be seen in the max
component diameter (plot b) and irregularity (plot c) from time
steps 5 to 18. This is because our centralized controller initially
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applies aggressive velocity adjustments (accelerations) and conse-
quently overcompensates. The overshoot can be decreased both
by increasing the length of the MPC prediction horizon and by
decreasing the size of the control step.

As expected, Olfati-Saber and the lattice-based MPCs perform
very well in terms of irregularity (plot c), since they are designed to
achieve the geometric regularity of an a-lattice. Somewhat surpris-
ingly, our distributed DF-MPC and centralized DF-MPC perform
almost as well as these approaches on this measure. Reynolds model
exhibits the least regularity in its formations.

For velocity convergence (plot d), we find that all models perform
comparably well and are able to achieve flocks with consistent
velocities fairly quickly after a sharp initial spike. The spike owes
its presence to the fact that to quickly maneuver into a flock-like
formation from a semi-random initial, velocity convergence has to
be compromised.

5.2 Robustness to Sensing Noise

To evaluate the resiliency of the models to sensor noise, we per-
formed 20 runs for each model at 10 noise levels. The noise levels
are numbered from 1 to 10, and noise level i has o, = 0.2i and
0y = 0.1i. For each performance metric, we averaged its final val-
ues over 20 runs for each noise level. The results are plotted in Fig. 5.
Of the six models, Olfati-Saber’s model is the most vulnerable to
sensing noise: the number of sub-flocks |CC| in Olfati-Saber’s model
quickly increases to nearly 30, rendering other metrics irrelevant.
The lattice-based MPC models also exhibit high fragmentation,
leading to nominally good but largely irrelevant values for the
other performance metrics. Our distributed DF-MPC has the best
resiliency to sensing noise, as it exhibits stable profiles in all met-
rics. Furthermore, distributed DF-MPC, centralized DF-MPC and,
Reynolds model remarkably maintain almost a single connected
component with a nearly constant component diameter for all
noise levels. On the irregularity measure, our distributed DF-MPC
performs significantly better then the centralized DF-MPC.

6 RELATED WORK

We discuss related work on rule-based and MPC-based flocking al-
gorithms, as well as research on flocking under noise and stochastic
dynamics. For an overview of flocking and more general consensus
and formation-control problems, we refer the reader to the reviews
in [13, 15].

Since the introduction of Reynolds rule-based flocking model [21],
a number of other models have been proposed. Vicsek et al. [25]
studied flocking from a physical perspective, by introducing a mini-
mal discrete-time model of motion where agents move at a constant
velocity and align their directions with the average directions of
their respective neighbors (subject to noisy updates). This model can
explain the phase transition from disordered to ordered/collective
motion. Cucker and Smale [7] extended Vicsek’s model in such
a way that the contributions of neighbors to the velocity of an
agent are inversely proportional to their distances to that agent,
and proved velocity convergence under different parameterizations.
This work has been further extended in [6] to provide collision-
avoidance guarantees. Another strategy is considered in the work
of Pearce et al. [16], where agents move to maximize their view out
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Figure 3: Examples of final formations for different flocking models. The red dots are the agent positions. The blue lines
denote the agent velocities; the line lengths are proportional to the speeds.
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Figure 4: Comparison of performance measures obtained with 100 runs for each flocking algorithm.
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Figure 5: Comparison of the final values of the performance measures obtained with 20 runs for each flocking algorithm and
for each noise level. The noise levels are numbered from 1 to 10, and noise level i has o, = 0.2i and o, = 0.1i.

of the flock. Artificial potential fields have long been deployed in Examples of such lattice-based MPC approaches include [27-29, 31].
motion planning [10] and, more recently, applied to flocking models Our declarative flocking method is also based on MPC but is de-
to represent inter-agent influences in terms of attractive/repulsive signed to optimize a combination of cohesion and separation, lead-
forces [14, 17, 18, 23]. ing to more natural flock geometry resembling those produced by

In contrast to the above methods, our declarative flocking ap- Reynolds model, yet maintaining a good level of geometric regu-
proach does not consider a fixed set of rules or dynamical equations, larity (unlike Reynolds model). Note that our approach achieves
but agent motion is the result of an optimal control problem, solved velocity alignment without directly optimizing for it, in contrast to
with MPC techniques. Our cost functions incorporate notions of other MPC flocking approaches such as [2, 5], where velocity align-
cohesion and separation that are at the core of many rule-based ment is explicitly included in the cost function. MPC was also used
models. in [12, 24] to study another kind of collective behavior, V-formation.

Most of the existing MPC-based approaches to flocking are de- Prior work exists that extend well-established models like Cucker-
signed to conform to the a-lattice structure introduced by Olfati- Smale and Olfati-Saber to study flocking under noise/stochasticity

Saber [14], resulting in formations with strict geometric regularity. in sensing, actuation and in the agents’ environment; see e.g. [1, 3,
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8,9, 11, 26]. In this paper we similarly compare the robustness of
different flocking models under increasing levels of sensing noise,
evaluating the effect of noise on fragmentation, cohesion, velocity
convergence, and regularity.

7 CONCLUSIONS

We have presented an abstract, declarative form of control for
flocking behavior along with the results of a thorough performance
comparison of centralized and distributed versions of our MPC-
based declarative flocking with four other flocking models. Our
results demonstrate that DF-MPC yields the best cohesion and
least fragmentation, and produces natural flock shapes like those
produced by Reynolds rule-based model. Our resiliency analysis
shows that the distributed version of DF-MPC is highly robust to
Sensor noise.

As future work, we plan to study resilience of the flocking mod-
els with respect to additional stochastic scenarios, such as actuation
noise (i.e., noise affecting acceleration) and faulty agents with de-
viant behavior. We also plan to investigate smoothing techniques
to increase resilience to sensor noise.

Additionally, to reduce the online computational overhead asso-
ciated with MPC-based techniques such as our declarative flocking,
we plan to learn the associated control laws in the form of a Deep
Neural Network (DNN); this is motivated in part by Zhang et al.’s
success using MPC to train a DNN-based controller for collision
avoidance [30]. After training, the online computational cost is
reduced to the cost of evaluating the DNN on an input.
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